computing a sequence of vectors
2 ビュー (過去 30 日間)
古いコメントを表示
the sequence is defined, for i = 1:n, by this vectorial recurrence relation :
[A(i+1); B(i+1)] = Q * [A(i); B(i)] + [C; D]
with Q = [-(L+d)/d, L/d; -L/d, (L-d)/d]
and [C; D] = 0.5 * q * sin(alpha) * [L + d; L^2/d]
Where n, L, d, q, alpha are given constants
I want to compute symbollically [A(i); B(i)] as a function of [A(n); B(n)], which is known.
How to model in matlab the quantities [A(i); B(i)] for i = 1:n ?
0 件のコメント
採用された回答
Birdman
2021 年 1 月 13 日
Try the following code:
n=1;L=1;d=1;q=1;%randomly given
syms alpha
C=0.5*q*sin(alpha)*[L+d];
D=0.5*q*sin(alpha)*[L^2/d];
Q=[-(L+d)/d,L/d;-L/d,(L-d)/d];
n=10;%randomly given
A=sym(zeros(n,1));B=sym(zeros(n,1));%preallocation
for i=1:n
temp=Q*[A(i);B(i)]+[C;D];
A(i+1)=temp(1);
B(i+1)=temp(2);
end
Then display the values to see if they are correctly obtained.
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Number Theory についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!