Solving third order nonlinear boundary value problem

1 回表示 (過去 30 日間)
parham kianian
parham kianian 2020 年 12 月 21 日
編集済み: Torsten 2023 年 10 月 1 日
I have a boundary value problem in this form:
where alpha is a nonzero constant and boudary conditions are:
f(-1) = 0
f(0) = 1
f(1) = 0
How can I solve this problem using bvp5c?
  5 件のコメント
PRITESH
PRITESH 2023 年 10 月 1 日
Hi @Torsten. Thanks for the reply. I am still confused while applying this technique. I am trying to use bvp4c and am getting singular Jacobian values.
Torsten
Torsten 2023 年 10 月 1 日
編集済み: Torsten 2023 年 10 月 1 日
I am trying to use bvp4c and am getting singular Jacobian values.
I don't:
alpha = 1;
xc = 0;
xmesh = [linspace(-1,xc,1000),linspace(xc,1,1000)];
solinit = bvpinit(xmesh, [0 0 0]);
sol = bvp5c(@(x,y,r)f(x,y,r,alpha),@bc,solinit);
plot(sol.x,sol.y(1,:))
function dydx = f(x,y,region,alpha)
dydx = [y(2);y(3);-alpha*y(1)*y(2)-4*alpha^2*y(2)];
end
function res = bc(yl,yr)
res = [yl(1,1);yr(1,1)-1;yr(1,1)-yl(1,2);yr(2,1)-yl(2,2);yr(3,1)-yl(3,2);yr(1,2)];
end

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeRobotics System Toolbox についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by