How to build a CNN model to classify motor imagery tasks from EEG signals?
1 回表示 (過去 30 日間)
古いコメントを表示
I have processed the raw eeg signals using DWT, and have extracted the detailed coefficients at level 3,4 and 5, and naming them as D3,D4,D5/ (sampling frequency at 200Hz).
Now, I would like to pass D3,D4,D5 as input to the CNN model to classify the signals. How can i build a CNN model for this problem?
0 件のコメント
回答 (1 件)
Srivardhan Gadila
2020 年 12 月 20 日
You can refer to Classify ECG Signals Using Long Short-Term Memory Networks, Modulation Classification with Deep Learning & Topics in the Signal Processing Using Deep Learning documentation page.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で EEG/MEG/ECoG についてさらに検索
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!