How to calculate confusion matrix , accuracy and precision

142 ビュー (過去 30 日間)
Abdussalam Elhanashi
Abdussalam Elhanashi 2020 年 12 月 10 日
コメント済み: sed 2022 年 8 月 20 日
Hi
I have two logical tables 100 x 100 for each that contain 0 & 1 values . one table for original values and other table is for predicted values
i want to know how can i make confusion matrix and calculate accuracy and precision for predicted values in comparision to original values
Here the tables:-
original values
predicted values

回答 (2 件)

Srivardhan Gadila
Srivardhan Gadila 2020 年 12 月 17 日
You can refer to the following functions available in MATLAB to compute confusion matrix: Functions for computing "confusion matrix".
accuracy = sum(OrigValues == PredValues,'all')/numel(PredValues)
Make sure that the above computations are performed properly w.r.t the number of samples dimension and necessary changes are to be made based on it (i.e., Dimension of number of samples can be number of rows or number of columns or the number of tables itself in your case as it is not mentioned anywhere in the question).

Ayokunmi Opaniyi
Ayokunmi Opaniyi 2022 年 5 月 22 日
I will like to calculate the accuracy, precision and recall of my dataset in matlab.
can anyone please help me how to go about it with the sample code.
Thank you in advance.
  1 件のコメント
sed
sed 2022 年 8 月 20 日
figure
cm=confusionchart(Ytest,YPred)
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
cm.Title = ' Confusion Matrix';
[m,order]=confusionmat(Ytest,YPred);
Diagonal=diag(m);
sum_rows=sum(m,2);
Precision=Diagonal./sum_rows;
Overall_Precision=mean(Precision)
sum_col=sum(m,1);
recall=Diagonal./sum_col';
overall_recall=mean(recall)
F1_Score=2*((Overall_Precision*overall_recall)/(Overall_Precision+overall_recall))

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeStatistics and Machine Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by