normalising and reverse normalising data
15 ビュー (過去 30 日間)
古いコメントを表示
For forecasting , I normalised the data before training for test and train data , then when i plot the rmse , i get rmse 0.2.but when i try to reverse the normalised values to match with orginal target of test data it shows high error.
i have used below code to normalise and denormalise :
[pn,ps] = mapminmax(XTrain);
[tn,ts] = mapminmax(YTrain);
[qn,qs] = mapminmax(XTest);
[rn,rs] = mapminmax(YTest);
net = trainNetwork(pn,tn,layers,options);
YPred=predict(net,qn);
YPred1 = mapminmax('reverse',YPred,ts);
what could be the reason ?
3 件のコメント
回答 (1 件)
Karan Nandankar
2020 年 12 月 28 日
Hi,
Looks like you have used the wrong Process Settings in the variable 'YPred1'. As I can see you are using XTest as your independent variable for Model Prediction, and the corresponding dependent variable YTest is normalized with Process Setting parameter 'rs'. However, for the variable YPred1 you have mapped the predictions against 'ts' (which is for YTrain).
In order to reverse the normalization, you can change the Process Setting parameter in YPred1 from 'ts' to 'rs'.
YPred1 = mapminmax('reverse',YPred,rs);
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Statistics and Machine Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!