manaully remake neural network from example

2 ビュー (過去 30 日間)
soepblik
soepblik 2020 年 12 月 2 日
編集済み: soepblik 2020 年 12 月 8 日
Hi,
i am trying to manually calculate the output values for the neural network which is made in this example: https://nl.mathworks.com/help/comm/ug/training-and-testing-a-neural-network-for-llr-estimation.html. (the Network for the 16-QAM).
it has 2 inputs, 1 hidden layer with 8 neurons and an output layer with 4 neurons.
I try to calculate the output values manually. But i get different results than the calculated values from the script.
My script now:
w1 = net.IW{1} %the input-to-hidden layer weights
w2 = net.LW{2} %the hidden-to-output layer weights
b1 = net.b{1} %the input-to-hidden layer bias
b2 = net.b{2} %the hidden-to-output layer bias
% Layer 1
a1 = tansig(repmat(b1,1,size(x,2)) + w1*x);
% output
n=repmat(b2,1,size(x,2)) + w2*a1;
output= purelin(n);
What am i doing wrong or what do i forget in my calculation to get the correct values?
thanks in advance!
  1 件のコメント
soepblik
soepblik 2020 年 12 月 8 日
someone that could help?
it has 1 hidden layer with relu activation
and the output layer has a pure linear activation.

サインインしてコメントする。

回答 (0 件)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by