Inserting Elements in middle of 1-D, 2-D, N-D Array
5 ビュー (過去 30 日間)
古いコメントを表示
Dear All,
I have got an array X = [1 2 3 4 5].
Want to refine the points by averaging neighbours and insert in the middle.
X1 = [1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0].. So, 5 points have become 9 points.
Is there an easier way to do it for a general array?
I would like to make it work in N-dimension also ... for refining the points.
Any help is much appreciated.
Thank You in advance,
K Vijay Anand.
0 件のコメント
採用された回答
Ameer Hamza
2020 年 12 月 1 日
編集済み: Ameer Hamza
2020 年 12 月 1 日
interp1() is suitable for such cases.
X = [1 2 3 4 5];
n_new = 9;
X_new = interp1(linspace(0,1,numel(X)), X, linspace(0,1,n_new))
For a high-dimensional case, you need to specify whether you want to apply it on a single dimension or all the dimensions?
2 件のコメント
Ameer Hamza
2020 年 12 月 1 日
編集済み: Ameer Hamza
2020 年 12 月 1 日
Try interp2():
X = [
1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0
];
new_size = [5 5];
[xg, yg] = meshgrid(linspace(0,1,size(X,2)), linspace(0,1,size(X,1)));
[xg_, yg_] = meshgrid(linspace(0,1,new_size(2)), linspace(0,1,new_size(2)));
X_new = interp2(xg, yg, X, xg_, yg_);
or interpn() for a more general solution.
その他の回答 (1 件)
Stephan
2020 年 12 月 1 日
編集済み: Stephan
2020 年 12 月 1 日
This may help
X = [
1.0 2.0 3.0
4.0 5.0 6.0
7.0 8.0 9.0]
F = griddedInterpolant(X)
[xq,yq] = ndgrid(1:0.5:3);
Vq = F(xq,yq)
results in:
X =
1 2 3
4 5 6
7 8 9
F =
griddedInterpolant with properties:
GridVectors: {[1 2 3] [1 2 3]}
Values: [3×3 double]
Method: 'linear'
ExtrapolationMethod: 'linear'
Vq =
1.0000 1.5000 2.0000 2.5000 3.0000
2.5000 3.0000 3.5000 4.0000 4.5000
4.0000 4.5000 5.0000 5.5000 6.0000
5.5000 6.0000 6.5000 7.0000 7.5000
7.0000 7.5000 8.0000 8.5000 9.0000
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!