ODE Function time output
1 回表示 (過去 30 日間)
古いコメントを表示
Dear all,
I wrote the code below now, I have initial concentration 6mg/L but i need to calculate when it reaches (0.05*6) mg/L. Could you help me please? I need the t value when concentration is equal to (0.05*6) mg/L
Z0=6;
tspan = [0 24];
[tZ,Z] = ode45(@ConcDCE,tspan,Z0);
function dZdt=ConcDCE(t,Z)
k1=1.26;
k2=0.74;
k3=0.22;
X0=1;
Y0=4;
Z0=6;
dZdt=k2*(Y0*exp(-k2*t)+((X0*k1)/(k2-k1)*(exp(-k1*t)-exp(-k2*t))))-k3*(Z0*exp(-k3*t)+((Y0*k2)/(k3-k2)*(exp(-k2*t)-exp(-k3*t)))+X0*k1*k2*((exp(-k1*t))/((k2-k1)*(k3-k1))-(exp(-k2*t))/((k2-k1)*(k3-k2))+(exp(-k3*t))/((k3-k1)*(k3-k2))));
end
0 件のコメント
採用された回答
Stephan
2020 年 11 月 23 日
編集済み: Stephan
2020 年 11 月 24 日
Use events:
Z0 = 6;
Zt=0.05*6;
tspan = [0 24];
opts = odeset('Events',@(tZ,Z)EventsFcn(tZ,Z,Zt));
[tZ,Z,tZe,Ze,iZe] = ode45(@ConcDCE,tspan,Z0,opts);
plot(tZ,Z)
hold on
scatter(tZe,Ze,'or')
function dZdt=ConcDCE(t,~)
k1=1.26;
k2=0.74;
k3=0.22;
X0=1;
Y0=4;
Z0=6;
dZdt=k2*(Y0*exp(-k2*t)+((X0*k1)/(k2-k1)*(exp(-k1*t)-exp(-k2*t))))-k3*(Z0*exp(-k3*t)+((Y0*k2)/(k3-k2)*(exp(-k2*t)-exp(-k3*t)))+X0*k1*k2*((exp(-k1*t))/((k2-k1)*(k3-k1))-(exp(-k2*t))/((k2-k1)*(k3-k2))+(exp(-k3*t))/((k3-k1)*(k3-k2))));
end
function [Conc,isterminal,direction] = EventsFcn(~,Z,Zt)
Conc = Z - Zt; % The value that we want to be zero
isterminal = 0; % Halt integration
direction = 0; % The zero can be approached from either direction
end
4 件のコメント
Stephan
2020 年 11 月 24 日
I edited my code in my answer. For some reason I missed Z0 as initial value - accidentally I used Zt as initial value. This is corrected now. Sorry for this.
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!