How can I plot this function using Brent's method?
8 ビュー (過去 30 日間)
古いコメントを表示
in the interval (0:0004; 0:0012).
0 件のコメント
採用された回答
Manoj Kumar Koduru
2020 年 11 月 23 日
f=@(u) u*(1+0.7166/cos(25*sqrt(u)))-1.6901e-2; %Equation
a=-10;
b=+10;
err=0.001;
%Testing root is bracketed between [a b]
if f(a)*f(b) >=0
opts=struct('WindowsStyle','model','Interpreter','tex');
F=errordlg('The Root is out of the Brackets,increase a and b values'....
,'Roots Are Not Bracketed',opts); %Message Box
end
%Swapping a and b Contents
if abs(f(a)) < abs(f(b))
L=a; a=b; b=L;
end
c=a;
MFlag=1;
%Main Loop
delta =err; i=0;
while abs(b-a) >=err
i=i+1;
if f(a) ~=f(c)&&f(b) ~=f(c)
s=a*f(b)*f(c)/(f(a)-f(b))*(f(a)-f(c))+....
b*f(a)*f(c)/((f(b)*f(a))*(f(b)-f(c)))+...
c*f(a)*f(b)/((f(c)-f(a))*(f(c)-f(b))); %Inverse Quadratic Interpolation
else
s=b-f(b)*(b-a)/(f(b)-f(a)); %Secant method
end
if s<=(3*a+b)/4 || s>=b ||....
(MFlag==1 && abs(s-b) >= abs(b-c)/2) ||....
(MFlag==0 && abs(s-b) >= abs(c-d)/2) ||....
(MFlag==1 && abs(b-c) < abs(delta)) ||....
(MFlag==0 && abs(c-d) >= abs(delta))
s=(a+b)/2; %Bisection Method
MFlag=1;
else
MFlag=0;
end
%Calculate f(s)
d=c; c=b;
if f(a)*f(s) <0
b=s;
else
a=s;
end
%Swapping a and b contents
if abs(f(a)) < abs(f(b))
if abs(f(a)) < abs(f(b))
L=a; a=b; b=L;
end
end
ss(i,1)=s;
dd(i,1)=d;
ii(i,1)=i;
end
plot(1:i,ss,'Linewidth',2);
grid on
title('Brent Method')
xlabel('Number of Itterations')
ylabel('Root Contents')
2 件のコメント
John D'Errico
2020 年 11 月 24 日
Please don't do obvious homework problems for students. They learn nothing from you, except to then post every homework question here.
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!