Deep reinforcement learning for multi-agents

2 ビュー (過去 30 日間)
beni hadi
beni hadi 2020 年 11 月 20 日
コメント済み: beni hadi 2020 年 11 月 25 日
By the multi-agent deep reinforcement learning toolbox, three agents are trained. The reward changes are as shown in the picture. Why do agents' rewards decrease and converge to an unfavorable situation after the reward increases and they move towards desired performance? I expected the process of increasing the rewards and achieving the desired goal to continue as the episode progresses. According to the picture, from episode 700, agents converge to undesired situations, and they didn't change their states.
Thank you.

採用された回答

Emmanouil Tzorakoleftherakis
Emmanouil Tzorakoleftherakis 2020 年 11 月 22 日
編集済み: Emmanouil Tzorakoleftherakis 2020 年 11 月 22 日
Hello,
The policies you will get from RL training change depending on the amount of time the agents spend exploring. Usually, if you see a situation like this where agents converge to a non-ideal solution, you may want to change the agent options to increase exploration.
Hope that helps

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeReinforcement Learning についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by