ode; zero input response; drawing the function in matlab

10 ビュー (過去 30 日間)
Danny Van Elsen
Danny Van Elsen 2020 年 11 月 13 日
編集済み: Danny Van Elsen 2020 年 11 月 13 日
hello
in the context of ordinary differential equations and system modelling, an example of how to determine the zero-input response from a system modelled by q(D) is
for which the answer is supposed to be
So when trying to prove to myself that the resulting plot for q(D) really was a constant 0, I tried this in matlab:
syms x
y = exp(-x) * (cos(2*x) + 2*sin(2*x));
qD = (diff(y) + y)^2 + 4*y;
diffy = diff(y);
hold on
fplot(y, [0 5])
fplot(qD, [0 5])
fplot(diffy, [0 5])
legend ('y', 'qD', 'diffy')
but the resulting curve for 'qD' is anything but 0;
so is my formula for the 'qD' curve wrong? or is the solution to the exercise wrong?
regards, Danny.

採用された回答

Alan Stevens
Alan Stevens 2020 年 11 月 13 日
編集済み: Alan Stevens 2020 年 11 月 13 日
I think you should interpret (D+1)^2y as D^2y + 2Dy + y; i.e. d^2y/dt^2 + 2dy/dt + y
Currently you have it as (dy/dt)^2 +2dy/dt + y
  1 件のコメント
Danny Van Elsen
Danny Van Elsen 2020 年 11 月 13 日
indeed
qD = diff(y,2) + 2*diff(y) + 5*y;
does give me constant 0 result, thanks!!!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

タグ

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by