Info

この質問は閉じられています。 編集または回答するには再度開いてください。

facing problem to function calling

2 ビュー (過去 30 日間)
suketu vaidya
suketu vaidya 2020 年 11 月 9 日
閉鎖済み: MATLAB Answer Bot 2021 年 8 月 20 日
function [x,y1]=exlicit(f1)
h =1;
x = -pi:h:pi;
n = 0:1:10;
y1 = [0];
for i=1:n
x(i+1)=x(i)+h;
y1(i+1)=y1(i)+h*f1(x(i),y1(i));
end
end
%heun's method
function [x,y1]=heun(f1)
h =1;
x = -pi:h:pi;
n = 0:1:10;
y1 = [0];
for i=1:n
x(i+1)=x(i)+h;
ynew=y1(i)+h*(f1(x(i),y1(i)));
y1(i+1)=y1(i)+(h/2)*(f1(x(i+1),y1(i))+h*f1(x(i+1),ynew));
end
end
%euler implicit method
function [x,y1]=implicit(f1)
h =1;
x = -pi:h:pi;
n = 0:1:10;
y1 = [0];
for i=1:n
x(i+1)=x(i)+h;
ynew=y1(i)+h*(f1(x(i),y1(i)));
y1(i+1)=y1(i)+h*f1(x(i+1),ynew);
end
end
%Runge Kutta 4th order method:
function [x,y1]=Runge(f1)
h =1;
x = -pi:h:pi;
n = 0:1:10;
y1 = [0];
for i=1:n
k1=f1(x(i),y1(i));
y1(i+1)=y1(i)+(h*k1)
end
end
function dy =f1(x,y1)
d=50;
c1=-1-d^2/(d^2+1);
x=0:0.01:10;
dy=c1*exp(-d*x)+d*sin(x)/(d^2+1)+d^2*cos(x)/(d^2+1);
end
%plot
%call function
[x2,y2]=exlicit(f1);
[x3,y3]=heun(f1);
[x4,y4]=implicit(f1);
[x5,y5]=Runge(f1);
plot(x2,y2,'g-',x3,y3,'b',x4,y4,'m-',x5,y5,'r')
hold on
end
  3 件のコメント
suketu vaidya
suketu vaidya 2020 年 11 月 9 日
yes sir ,
Plot numerical solutions of the problem obtained with explicit Euler, implicit Euler, Heun and RK4 methods. Plot all numerical solutions on a single figure together with analytical one
Rik
Rik 2020 年 11 月 9 日
Well, you will first have to fix what is inside a function and what is outside of it. Pay attention to m-lint: those squiggly lines under your code should all be gone. It will give you advice how to solve them.

回答 (0 件)

この質問は閉じられています。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by