How to know which elements of a symbolic vector are real?

5 ビュー (過去 30 日間)
Renzo Segovia
Renzo Segovia 2020 年 11 月 4 日
回答済み: Walter Roberson 2025 年 2 月 11 日
I have this sym vector:
c = -(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 1)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 1)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 1)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 1)^2 + 974025000000000)^(1/2))/26887350
-(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 2)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 2)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 2)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 2)^2 + 974025000000000)^(1/2))/26887350
-(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 3)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 3)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 3)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 3)^2 + 974025000000000)^(1/2))/26887350
-(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 4)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 4)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 4)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 4)^2 + 974025000000000)^(1/2))/26887350
-(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 5)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 5)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 5)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 5)^2 + 974025000000000)^(1/2))/26887350
-(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 6)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 6)^2 + 974025000000000)^(1/2))/26887350
(179249^(1/2)*(634751*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 6)^4 - 45299238750*root(z^6 - (58169238750*z^4)/634751 + (130018668750000*z^2)/48827 - 1184625000000000000/48827, z, 6)^2 + 974025000000000)^(1/2))/26887350
Is it any easy (coded) way I can know which elements are real and which aren't?

回答 (2 件)

Gautam
Gautam 2025 年 2 月 11 日
Hello Renzo,
To determine which elements of a symbolic vector are real, you can use the isAlways function in conjunction with the isreal condition. This approach checks whether each element of the symbolic vector is always real under all assumptions.

Walter Roberson
Walter Roberson 2025 年 2 月 11 日
 c(imag(c)==0)

カテゴリ

Help Center および File ExchangeAssumptions についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by