Why is the mean square value changing to an another value for a different training function ?
1 回表示 (過去 30 日間)
古いコメントを表示
clc; clear all;close all;
seed = 2;
rand('seed',0);
co=1; % Testing takes pleace for co number of runs and average is returned
meanTrain=0; %mean performacne of training data
meanTest=0; %mean performacne of testing data
tn_data = xlsread('D:\PROJECT\back prop\train_data.xlsx');
s1 = tn_data;
tn_test = xlsread('D:\PROJECT\back prop\train_test.xlsx');
s2 = tn_test;
tt_data = xlsread('D:\PROJECT\back prop\test_data.xlsx');
s3 = tt_data;
tt_test = xlsread('D:\PROJECT\back prop\test_test.xlsx');
s4 = tt_test;
in=s(:,3:3); %in contains all inputs
ou=s(:,2:2); %ou contains all outputs
for i=1:co
trainInput=[];
trainOutput=[];
testInput=[];
testOutput=[];
trainInput = s1;
trainOutput = s2;
testInput = s3;
testOutput = s4;
inn = [trainInput' testInput'];
in = inn(:)
% network initialization
net=newff(minmax(in'),[20,1],{'tansig','purelin'},'traingdm_new');
net.trainParam.show = 50;
net.trainParam.lr = 0.01;
net.trainParam.mc = 0.1;
net.trainParam.epochs = 5000;
net.trainParam.goal = 2e-2;
% training
[net,tr]=train(net,trainInput',trainOutput');
% testing on training data
a = sim(net,trainInput');
a=a';
corr=0;
for j=1:size(trainInput,1)
if a(j)< 0.49 ans=0; else ans=1; end
if trainOutput(j)==ans corr=corr+1;
fprintf('\n the %d th image is correctly classified',j);
end
end
corr;
corr/size(trainInput,1)*100; % percent train accuracy
meanTrain=meanTrain+corr;
% testing on testing data
a = sim(net,testInput');
a=a';
corr=0;
for j=1:size(testInput,1)
if a(j)< 0.49 ans=0; else ans=1; end
if testOutput(j)==ans corr=corr+1;
q(j) = corr;
fprintf('\n the %d th image is correctly classified',j);
end
end
corr;
meanTest=meanTest+corr;
corr/size(testInput,1)*100; % percent test accuracy
end
s=size(trainInput,1);
%'Mean Train Recognized'
ttt =meanTrain;
ttit=meanTrain/co;
'Mean Train Recognition Accuracy'
result1 = (meanTrain/co)/s*100 % mean percent train accuracy
s=size(testInput,1);
%'Mean Test Recognized'
ttet = meanTest;
tet = meanTest/co;
'Mean Test Recognition Accuracy'
result2 = (meanTest/co)/s*100 % mean percent test accuracy
e = testOutput - a;
perf1 = mse(e)
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Code ends %%%%%%%%%%%%%%%%%%%%
The Test Accuracy that I get is 93.33 % and the mean square error is 0.1031
I have used the training function "traingdm".
If I use the training function "trainbr" and its corresponding training parameters, the classification percentage is 93.33%
But the mean square error changes to some other value. Why is this happening ????
1 件のコメント
Jan
2013 年 2 月 11 日
Please format your code properly. This would increase the readability and therefore allows for creating an answer more efficiently. Thanks.
採用された回答
Greg Heath
2014 年 1 月 15 日
help trainbr
Note that
"trainbr ... minimizes a combination of squared errors and weights"
Hope this helps.
Greg
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Sequence and Numeric Feature Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!