Finding roots using Newton raphson method

7 ビュー (過去 30 日間)
R Abhinandan
R Abhinandan 2020 年 10 月 27 日
コメント済み: R Abhinandan 2020 年 10 月 27 日
Here is my code and my output is a function and not a numerical value as I expected. Can anyone debug this code?
syms f y x df
f=@(y) exp(y)-(sin(pi*y/3));
df=@(y) exp(y)-((pi*cos(pi*y/3))/3);
x(1)=-3.0;
error=0.00001;
for i=1:10
x(i+1)=x(i)-((f(x(i)))/df(x(i)));
err(i)=abs((x(i+1)-x(i))/x(i));
if err(i)<error
break
end
end
root=x(i);
output:
- (sin((pi*(exp(-3)/(pi/3 + exp(-3)) + 3))/3) + exp(- exp(-3)/(pi/3 + exp(-3)) - 3))/(exp(- exp(-3)/(pi/3 + exp(-3)) - 3) - (pi*cos((pi*(exp(-3)/(pi/3 + exp(-3)) + 3))/3))/3) - exp(-3)/(pi/3 + exp(-3)) - 3

採用された回答

Alan Stevens
Alan Stevens 2020 年 10 月 27 日
Just get rid of the first line, you don't need it
f=@(y) exp(y)-(sin(pi*y/3));
df=@(y) exp(y)-((pi*cos(pi*y/3))/3);
x(1)=-3.0;
error=0.00001;
for i=1:10
x(i+1)=x(i)-((f(x(i)))/df(x(i)));
err(i)=abs((x(i+1)-x(i))/x(i));
if err(i)<error
break
end
end
root=x(i);
disp(root)
  3 件のコメント
Alan Stevens
Alan Stevens 2020 年 10 月 27 日
This is what I get:
>> f=@(y) exp(y)-(sin(pi*y/3));
df=@(y) exp(y)-((pi*cos(pi*y/3))/3);
x(1)=-3.0;
error=0.00001;
for i=1:10
x(i+1)=x(i)-((f(x(i)))/df(x(i)));
err(i)=abs((x(i+1)-x(i))/x(i));
if err(i)<error
break
end
end
root=x(i);
disp(root)
-3.0454
R Abhinandan
R Abhinandan 2020 年 10 月 27 日
Thank you, im sorry i didnt know that we have to save before running the code.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by