Why Matlab tells the following A*A^T matrix is not a positive Semi-definite Matrix ?
1 回表示 (過去 30 日間)
古いコメントを表示
M = [ 1.0000 0 0 0 0 0;...
0 0.9803 -0.0000 -0.0000 -0.0984 0.0984;...
0 -0.0000 0.9902 -0.0984 0.0000 0.0000;...
0 -0.0000 -0.0984 0.0098 0.0000 -0.0000;...
0 -0.0984 0.0000 0.0000 0.0099 -0.0099;...
0 0.0984 0.0000 -0.0000 -0.0099 0.0099];
Is from
and its eigenvalues are
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/388233/image.png)
d =
-0.0000
-0.0000
0.0000
1.0000
1.0000
1.0000 =
%When vpa is used it shows
-7.365e-18
-2.12e-18
1.347e-16
1.0
1.0
1.0
So, can't we call matrix M, positive semidefinite ?
Apperciated!
0 件のコメント
採用された回答
Matt J
2020 年 10 月 22 日
編集済み: Matt J
2020 年 10 月 22 日
Yes, it is positive semi-definite. But Matlab's ability to detect that is limited, because finite precision prevents it from computing exact eigenvalues.
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!