Polar plot using polyfit
19 ビュー (過去 30 日間)
古いコメントを表示
I'm trying to fit the VALUES to make a polar plot but it seems I couldn't fit one value 1400e2 which the polyfit doesn't take it? what other function should I use to make the polar plot correct so that it contains the values exactly at that degree ?
VGV = [ 2000e2 1800e2 1600e2 1400e2 ]; % [0 45 90 135 ]
angle = (pi/180).* [ 0 45 90 135 ];
alpha = (0:0.1:360);
alpha1 = (pi/180).*(0:0.1:360);
for k=1:1:length(alpha)
p = polyfit(angle,VGV,2);
f = polyval(p,alpha1(1:1:901));
f1 = fliplr(f(1:1:900));
f2 = fliplr(f1);
f3 = fliplr(f2);
Vp = [ f f1 f2 f3];
end
figure;polar(alpha1(1:1:3601),Vp,'o')
0 件のコメント
採用された回答
Image Analyst
2020 年 10 月 14 日
It seems you want to fit a section between 0 and 135 degrees, then squish that to between 0 and 90, then replicate that around the circle for all 360 degrees. Seems kinds weird, but okay, whatever...
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 22;
fprintf('Beginning to run %s.m ...\n', mfilename);
% Create training data.
VGV = [ 2000e2 1800e2 1600e2 1400e2 ]; % [0 45 90 135 ]
angleDegrees = [ 0 45 90 135 ];
angleRadians = (pi/180).* angleDegrees;
% Plot training data
polar(angleRadians, VGV, 'bo')
% Fit a quadratic
coefficients = polyfit(angleRadians, VGV, 1)
% Create 90 more angles to fit between our training angles.
alpha = linspace(min(angleRadians), max(angleRadians), 90);
% Get a fit over 0-135 degrees only.
vFit = polyval(coefficients, alpha);
% Plot fitted data:
hold on;
% Make other quadrants
vFit360 = [vFit, fliplr(vFit), vFit, fliplr(vFit)];
t = linspace(0, 2*pi, length(vFit360));
polar(alpha, vFit, 'r-')
polar(t, vFit360, 'b-')
% figure
% plot(t, vFit360, 'b-');
% hold on;
% plot(alpha, vFit, 'r-', 'LineWidth', 2);
fprintf('Done running %s.m ...\n', mfilename);
0 件のコメント
その他の回答 (2 件)
Alan Stevens
2020 年 10 月 14 日
I'm somewhat confused by your question and don't understand the need for all the flip commands! However, does the following meet your needs at all (incidentally, angle vs VGV is a straight line, so you don't need to get polyfit to fit a quadratic):
VGV = [ 2000e2 1800e2 1600e2 1400e2 ]; % [0 45 90 135 ]
angle = (pi/180).* [ 0 45 90 135 ];
alpha = (0:0.1:360);
alpha1 = (pi/180).*(0:0.1:360);
for k=1:1:length(alpha)
p = polyfit(angle,VGV,1);
f = polyval(p,alpha1);
% f1 = fliplr(f(1:1:900));
% f2 = fliplr(f1);
% f3 = fliplr(f2);
%
% Vp = [ f f1 f2 f3];
end
figure;
polarplot(alpha1,f,angle,VGV,'o')
This results in
Image Analyst
2020 年 10 月 14 日
First of all, polyfit does not need to be inside a loop since angle and VGV don't change inside the loop.
Next, you can fit a line, order 1, instead of a quadratic of order 2 since your VGV is linear.
Next, you have only 2 coefficients for p instead of 900.
% Create training data.
VGV = [ 2000e2 1800e2 1600e2 1400e2 ]; % [0 45 90 135 ]
angle = (pi/180).* [ 0 45 90 135 ];
% Create more angles to fit between our training angles.
alpha = (pi/180).*(0:0.1:360);
% Plot training data
polar(angle, VGV, 'bo')
% Fit a quadratic
coefficients = polyfit(angle, VGV, 1);
% Get a fit
vFit = polyval(coefficients, alpha);
% Plot fitted data:
hold on;
polar(alpha(1:1:3601), vFit, '-')
3 件のコメント
Image Analyst
2020 年 10 月 14 日
編集済み: Image Analyst
2020 年 10 月 14 日
If you want 360 interpolated angles instead of 3601 interpolated angles, you'd have to change the way you define alpha to this:
alpha = (pi/180).*(0 : 359); % Exactly 360 angles
If you really want, you can plot blue circles with 'bo' instead of red lines with 'r-'.
If you really want that weird shape you have instead of a spiral, then you'd have to do that flipping craziness, but be aware that alpha no longer means the angle when you go to plot it.
参考
カテゴリ
Help Center および File Exchange で Scatter Plots についてさらに検索
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!