Portfolio Optimization with LASSO

17 ビュー (過去 30 日間)
ANDREA MUZI
ANDREA MUZI 2020 年 10 月 12 日
回答済み: ANDREA MUZI 2020 年 10 月 12 日
I have to find the optimal portfolio adding the "l-1 norm" constraint to the classical mean-variance model. How can i write this optimization in matricial form ?

回答 (2 件)

Ameer Hamza
Ameer Hamza 2020 年 10 月 12 日
編集済み: Ameer Hamza 2020 年 10 月 12 日
This shows an example for the case of 5 portfolios
mu = rand(1, 5);
eta = 0.5;
Sigma = ones(5);
Aeq = [mu; ones(1, 5)];
Beq = [eta; 1];
x0 = rand(5,1); % initial guess
sol = fmincon(@(x) x.'*Sigma*x, x0, [], [], Aeq, Beq, [], [], @nlcon);
function [c, ceq] = nlcon(x)
c = sum(abs(x))-1;
ceq = [];
end
  4 件のコメント
ANDREA MUZI
ANDREA MUZI 2020 年 10 月 12 日
equal to eta
Ameer Hamza
Ameer Hamza 2020 年 10 月 12 日
Then the code in my answer satisfies all the constraints. You can verify
mu = rand(1, 5);
eta = 0.5;
Sigma = ones(5);
Aeq = [mu; ones(1, 5)];
Beq = [eta; 1];
x0 = rand(5,1); % initial guess
sol = fmincon(@(x) x.'*Sigma*x, x0, [], [], Aeq, Beq, [], [], @nlcon);
function [c, ceq] = nlcon(x)
c = sum(abs(x))-1;
ceq = [];
end
Results
>> mu*sol % output is eta
ans =
0.5000
>> sum(sol) % sum is 1
ans =
1
>> sum(abs(sol)) % sum of absolute values is 1
ans =
1

サインインしてコメントする。


ANDREA MUZI
ANDREA MUZI 2020 年 10 月 12 日
I thank you but it is not the result I expected; I try to rephrase the question. I found a way to linearize the constraint on the weights norm (photo). Basically I have to find the vector between tmin and tmax, in which tmin penalizes all the weights of the assets, bringing them to zero, except one whose weight will be equal to 1 and tmax, whose value will not penalize any asset

カテゴリ

Help Center および File ExchangeLinear Programming and Mixed-Integer Linear Programming についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by