Computing the absolute error

5 ビュー (過去 30 日間)
Cecilio Flores Roque
Cecilio Flores Roque 2020 年 10 月 8 日
編集済み: Ameer Hamza 2020 年 10 月 8 日
How do I compute the absolute error n = |xn − xr| for n = 0, 1, . . . , 50, where we take the output xr from MATLAB’s fzero function with initial guess xinit = 1 to be the “true” root, given this.
xn = bisectionMethod(f, a, b, numiter)
f1= @(x) cos(x)-x;
f2= @(x) exp(-x^2)-x;
f3= @(x) (x^3)-(1/2);
x1= bisectionMethod(f1, 0, 1, 50);
x2= bisectionMethod(f2, 0, 1, 50);
x3= bisectionMethod(f3, 0, 1, 50);

採用された回答

Ameer Hamza
Ameer Hamza 2020 年 10 月 8 日
編集済み: Ameer Hamza 2020 年 10 月 8 日
Consider one function
f1 = @(x) cos(x)-x;
x1r = fzero(f1, 0);
You can do it like this
n = 0:50;
x1n = zeros(size(n)); % all solutions for f1
for i = 1:numel(x1n)
x1n(i) = bisectionMethod(f1, 0, 1, n(i));
end
err = abs(x1n-z1r);
A more efficient approach is to modify bisectionMethod() function such that it returns a complete vector in a single call. The above code is repeating the same calculations several times.

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeGenerating and Calling Reentrant Code についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by