empty sym 0-by-1 error

1 回表示 (過去 30 日間)
Maya Venugopalan
Maya Venugopalan 2020 年 10 月 7 日
編集済み: Walter Roberson 2020 年 10 月 7 日
syms c
delta = 0.0158;
alp = 6;
a = alp*delta;
Re = 1000;
y = 0.5;
y1 = y*delta;
U = (-357554.879*y1^2 + 11298.734*y1)/89.26;
ddU = -2;
l3 = -((-((a*Re*c*1i)-(2*a^2)-(a*Re*U*1i))+((2*a^2*Re^2*U*c)-(a^2*Re^2*(U^2+c^2))-(4*a*Re*ddU*1i))^(1/2))/2)^(1/2);
l4 = -((-((a*Re*c*1i)-(2*a^2)-(a*Re*U*1i))-((2*a^2*Re^2*U*c)-(a^2*Re^2*(U^2+c^2))-(4*a*Re*ddU*1i))^(1/2))/2)^(1/2);
eqn = subs((U-c)*((l3^2*exp(l3*y) - l4^2*exp(l4*y)) - (a^2*(exp(l3*y)-exp(l4*y))))-(ddU*(exp(l3*y)-exp(l4*y)))-((1/(a*Re*1i))*(((l3^4*exp(l3*y))-(l4^4*exp(l4*y)))-(2*a^2*(l3^2*exp(l3*y) - l4^2*exp(l4*y))) + a^4*(exp(l3*y)-exp(l4*y)))));
answer = vpasolve(eqn,c)
In this particular code, for alp = 6,8,12,13,, the output is an error, "empty sym 0-by-1". But for alp values like 1,2,3,4,5,7,..I am getting values of c. I actualy want all the values of c when alp varies from 1 to 20
Can somebody help me with the solution?
Thank you!!
  4 件のコメント
Walter Roberson
Walter Roberson 2020 年 10 月 7 日
syms c
delta = 0.0158;
alp = 6;
a = alp*delta;
Re = 1000;
y = 0.5;
y1 = y*delta;
U = (-357554.879*y1^2 + 11298.734*y1)/89.26;
ddU = -2;
l3 = -((-((a*Re*c*1i)-(2*a^2)-(a*Re*U*1i))+((2*a^2*Re^2*U*c)-(a^2*Re^2*(U^2+c^2))-(4*a*Re*ddU*1i))^(1/2))/2)^(1/2);
l4 = -((-((a*Re*c*1i)-(2*a^2)-(a*Re*U*1i))-((2*a^2*Re^2*U*c)-(a^2*Re^2*(U^2+c^2))-(4*a*Re*ddU*1i))^(1/2))/2)^(1/2);
eqn = subs((U-c)*((l3^2*exp(l3*y) - l4^2*exp(l4*y)) - (a^2*(exp(l3*y)-exp(l4*y))))-(ddU*(exp(l3*y)-exp(l4*y)))-((1/(a*Re*1i))*(((l3^4*exp(l3*y))-(l4^4*exp(l4*y)))-(2*a^2*(l3^2*exp(l3*y) - l4^2*exp(l4*y))) + a^4*(exp(l3*y)-exp(l4*y)))));
answer = vpasolve(simplify(eqn),c)
answer = 
0.808659088500827642279535174149560.012297044380461873020713794371614i
Which release are you using? It works in R2020a and R2020b
Maya Venugopalan
Maya Venugopalan 2020 年 10 月 7 日
Yes!! This worked!!!
I'm using R2019a.
Thank you soooo much!!!!

サインインしてコメントする。

採用された回答

Walter Roberson
Walter Roberson 2020 年 10 月 7 日
編集済み: Walter Roberson 2020 年 10 月 7 日
syms c
delta = 0.0158;
alp = 6;
a = alp*delta;
Re = 1000;
y = 0.5;
y1 = y*delta;
U = (-357554.879*y1^2 + 11298.734*y1)/89.26;
ddU = -2;
l3 = -((-((a*Re*c*1i)-(2*a^2)-(a*Re*U*1i))+((2*a^2*Re^2*U*c)-(a^2*Re^2*(U^2+c^2))-(4*a*Re*ddU*1i))^(1/2))/2)^(1/2);
l4 = -((-((a*Re*c*1i)-(2*a^2)-(a*Re*U*1i))-((2*a^2*Re^2*U*c)-(a^2*Re^2*(U^2+c^2))-(4*a*Re*ddU*1i))^(1/2))/2)^(1/2);
eqn = subs((U-c)*((l3^2*exp(l3*y) - l4^2*exp(l4*y)) - (a^2*(exp(l3*y)-exp(l4*y))))-(ddU*(exp(l3*y)-exp(l4*y)))-((1/(a*Re*1i))*(((l3^4*exp(l3*y))-(l4^4*exp(l4*y)))-(2*a^2*(l3^2*exp(l3*y) - l4^2*exp(l4*y))) + a^4*(exp(l3*y)-exp(l4*y)))));
answer = vpasolve(simplify(eqn),c)
Note: my research suggested that there might be up to three solutions, with the real and imaginary parts all within +/- 2 . It was difficult to tell whether some of the locations reached zero or just came close to zero.

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by