Cross validation in matlab
2 ビュー (過去 30 日間)
古いコメントを表示
What are the steps to performing cross validation on labels of data to get the accuracy of the results?
0 件のコメント
採用された回答
Greg Heath
2013 年 1 月 30 日
編集済み: Greg Heath
2018 年 1 月 1 日
Repeat until the parameter estimates converges
1.Randomly divide the data into 10 subsets
2.For each subset
a. Use the remaining 9 subsets to design a model
b. Test the model with the holdout subset
c. Update the average and standard deviation of
the holdout test set error.
d. If std < thresh1 or std < thresh2*avg, stop.
Hope this helps.
Thank you for formally accepting my answer.
Greg
0 件のコメント
その他の回答 (1 件)
Ilya
2013 年 1 月 30 日
The Statistics Toolbox provides utilities for cross-validation. If you are using R2011a or later, take a look at ClassificationTree.fit, ClassificationDiscriminant.fit, ClassificationKNN.fit and fitensemble. Notice the 'crossval' parameter and other related parameters. If you are working in an older release or not using any of these classifiers, the crossval function is a generic utility for that purpose.
参考
カテゴリ
Help Center および File Exchange で Discriminant Analysis についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!