Help me to solve the function

8 ビュー (過去 30 日間)
Kevin Isakayoga
Kevin Isakayoga 2020 年 9 月 29 日
編集済み: Kevin Isakayoga 2020 年 10 月 19 日
closed

採用された回答

KSSV
KSSV 2020 年 9 月 29 日
clear; clc;
wc=0.4;
pc=3.16;
T=293;
rwc3s=0.586;
rwc3a=0.172;
mc=0.3;
vc=1/((wc*pc)+1);
ro=(3*vc/(4*pi))^1/3;
yg=0.25;
yw=0.15;
RH=0.88;
b1=1231;
b2=7579;
B293=0.3*10^-10;
C=5*10^7;
ER=5364;
De293=((rwc3s*100)^2.024)*(3.2*10^-14);
kr293=(8.05*(10^-10))*((rwc3s*100+rwc3a*100)^0.975);
v=2.15;
cw=((RH-0.75)/0.25)^3;
pw=1;
B=B293*exp(-b1*(1/T-1/293));
kr=kr293*exp(-ER*(1/T-1/293));
da=360;
dt=1;
Nn=(da)*(1/dt);
timestep=0;
time=1:Nn;
time2=1:Nn+1;
% r_initial=16;
r_initial=[ 0.5 2 8 16 32];
m = length(r_initial) ;
n1 = length(time) ; n2 = length(time2) ;
Alfa = zeros(m,n1) ;
RT_INC1 = zeros(m,n1) ;
RT_INC2 = zeros(m,n1) ;
for i = 1:length(r_initial)
ro_init=r_initial(i)*0.001;
L=((4*pi*(wc*pc/pw+1)/3)^(1/3))*ro_init;
for BB=1:Nn
if (BB==1)
rt_inc(1)=ro_init(1)-0.00001; %boundary condition for unhydrated
else
rt_inc(1)=ro_init(1)-0.00001;
end
rt_inc(Nn+1)=0;
if (BB==1)
Rt_inc(1)=ro_init(1)+0.00001; %boundary condition for hydrated
else
Rt_inc(1)=ro_init(1)+0.00001;
end
Rt_inc(Nn+1)=0;
end
for M=1:Nn
if Rt_inc(M)/L<=ro
Sr(M)=0;
elseif (Rt_inc(M)/L>=ro)&&(Rt_inc(M)/L<0.5)
Sr(M)=4*pi*(Rt_inc(M)/L)^2;
elseif (0.5<=Rt_inc(M)/L)&&(Rt_inc(M)/L<0.5*(2^0.5))
Sr(M)=(4*pi*(Rt_inc(M)/L)^2)-(6*pi*(1-(0.5/(Rt_inc(M)/L))));
elseif (Rt_inc(M)/L>=0.5*(2^0.5)) && (Rt_inc(M)/L<0.5*(3^0.5))
fun = @(y,x) 8*(Rt_inc(M)/L)./(sqrt((Rt_inc(M)/L)^2-(x.^2)-(y.^2)));
ymin=sqrt((Rt_inc(M)/L)^2-0.5);
xmin=@(x) sqrt((Rt_inc(M)/L)^2-0.25-x.^2);
Sr(M)=integral2(fun,ymin,0.5,xmin,0.5);
else
Sr(M)=0;
end
cst(M)=Sr(M)/(4*pi*Rt_inc(M)^2);
alfa(M)=1-(rt_inc(M)/ro_init)^3;
kd(M)=(B/(alfa(M)^1.5))+C*(Rt_inc(M)-ro_init)^4;
De(M)=De293*(log(1/alfa(M)))^1.5;
rt_inc(M+1)=rt_inc(M)-(dt*((pw*cst(M)*cw)/((yw+yg)*pc*rt_inc(M)^2))*1/((1/(kd(M)*rt_inc(M)^2))+(((1/rt_inc(M))-(1/Rt_inc(M)))/De(M))+(1/(kr*rt_inc(M)^2))));
Rt_inc(M+1)=((v-1)*((rt_inc(M)-rt_inc(M+1))/dt))*dt+Rt_inc(M);
end
Alfa(i,:) = alfa ;
RT_INC1 = Rt_inc ;
RT_INC2 = rt_inc ;
end
figure(1)
plot(time,Alfa)
legend
xlabel('Time (Hours)')
xlim([0 da])
grid on
figure (2)
plot(time2,RT_INC1,time2,RT_INC2),grid;
legend
yline(ro_init,'-','Initial Radius Particles');
legend('R_t','r_t','r_o')
%title('xx')
xlabel('Time (Hours)')
ylabel('Radius of Particles (mm)')
xlim([0 da])
grid on
  3 件のコメント
Kevin Isakayoga
Kevin Isakayoga 2020 年 9 月 29 日
By the way, I think the last graph is not the same like I want, because its only depends on the final value which in this case is 32.
r_initial=[ 0.5 2 8 16 32];
Could you help me to make each of the r_initial value influence to become a graph? I already tried like this,
RT_INC1(i,:) = Rt_inc ;
RT_INC2(i,:) = rt_inc ;
the value become messy.
figure (2)
plot(time2,RT_INC1,time2,RT_INC2),grid;
yline(ro_init,'-','Initial Radius Particles');
legend('R_t','r_t','r_o')
xlabel('Time (Hours)')
ylabel('Radius of Particles (mm)')
xlim([0 da])
grid on
Thank you very much in advance! Looking forward to your reply.
KSSV
KSSV 2020 年 9 月 29 日
It is changing.....you need to check your formula..

サインインしてコメントする。

その他の回答 (0 件)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by