What is the difference between Gram-Smith QR decomposition procedure and qr.m function in Matlab?
11 ビュー (過去 30 日間)
古いコメントを表示
Osama Al-Shalali
2020 年 9 月 28 日
コメント済み: Christine Tobler
2020 年 10 月 22 日
Hi everyone!
I want to know what is the differnce between the Gram-Smith procedure and qr.m function in matlab. Why there is a fourth coulmn resulting from using qr.m function? The photo is attached for the Gram-Smith procedure .Any help will be so appreciated.
The code is
A=[1 -2 -1; 2 0 1; 2 -4 2;4 0 0];
[Q,R] = qr(A)
The result is
Q =
-0.2000 0.4000 0.8000 -0.4000
-0.4000 -0.2000 -0.4000 -0.8000
-0.4000 0.8000 -0.4000 0.2000
-0.8000 -0.4000 0.2000 0.4000
R =
-5.0000 2.0000 -1.0000
0 -4.0000 1.0000
0 0 -2.0000
0 0 0

0 件のコメント
採用された回答
Christine Tobler
2020 年 9 月 28 日
MATLAB's QR decomposition is computed using Householder transformations, which is generally more numerically advantageous.
9 件のコメント
f
2020 年 10 月 22 日
編集済み: f
2020 年 10 月 22 日
Just a tiny detail: Matlab's qr does not ensure that det(Q)=1. The determinant of Q may be 1 or -1; it is data-dependent, since it is (-1)^(number_of_nontrivial_reflectors_used). So it cannot be used in a straightforward way to determine the sign of det(A).
Christine Tobler
2020 年 10 月 22 日
Good point, det(R) will only tell you the absolute value of the original matrix, otherwise you would have to construct the complete Q matrix to compute the sign of its determinant.
その他の回答 (0 件)
参考
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!