MATLAB Answers

Binary Classification with patternnet - wrong output

9 ビュー (過去 30 日間)
Vincent Kelber
Vincent Kelber 2020 年 9 月 25 日
編集済み: Vincent Kelber 2020 年 9 月 29 日
Hi together,
what i want to do, is to train a neural network (patternnet) classificator. Inputs are the size 10000x7, so 10.000 samples and 7 inputs.
Output is logical (10.000x1).
My problem is, if i use the patternnet function with a HiddenLayerSize > [], my output is no longer binary, than in a range between [0,1].
Here is my code:
hiddenLayerSize = [10,10,10];
net = patternnet(hiddenLayerSize, method);
net = configure(net, in_train', out_train');
net.input.processFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows','mapminmax'};
net.trainParam.goal = gl;
net.divideFcn = divider; % Divide data randomly
net.divideMode = divMod; % Divide up every sample
net.divideParam.trainRatio = x/100;
net.divideParam.valRatio = y/100;
net.divideParam.testRatio = z/100;
net.performFcn = pfFcn;
net.trainParam.epochs = epoch;
net.Layers{:}.transferFcn = transfer;
net = train(net,in_train',out_train'
What can i do?
Thanks :)

  0 件のコメント


回答 (1 件)

Anshika Chaurasia
Anshika Chaurasia 2020 年 9 月 28 日
Hello Vincent,
It is my understanding that after training the neural network, the ouput is in range between [0,1] and you want output as logical i.e., {0,1}.
For getting logical output you could apply threshold i.e., if output >= 0.5 then output = 1 or else output = 0.
% Train the Network
[net,tr] = train(net,inputs,targets);
% Test the Network
outputs = net(inputs);
logical_output = zeros(1,10000);
logical_output(outputs >= 0.5) = 1; % applying threshold

  1 件のコメント

Vincent Kelber
Vincent Kelber 2020 年 9 月 29 日
Hi Anshika,
yes you are absolutely right. And that is one oportunity, yes. But the goal i want to achieve (to simplify the model) is not covered with that. Is there no other possibility to do that inside the model?
Thanks, Vinc


Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by