Can someone provide me the theory and math behind this function of eigen?
1 回表示 (過去 30 日間)
古いコメントを表示
[V,D] = eig(A,B)
returns diagonal matrix D of generalized eigenvalues and full matrix V whose columns are the corresponding right eigenvectors, so that A*V = B*V*D.
2 件のコメント
KSSV
2020 年 9 月 23 日
Eigen values are very basic..they are the solution/ roots of det(A-lambda*B)=0.
Bjorn Gustavsson
2020 年 9 月 23 日
For a more exheustive introduction with some more details you can turn to: Eigenvalues and eigenvectors at wikipedia and Generalized eigenvectors.
採用された回答
Bruno Luong
2020 年 9 月 23 日
編集済み: Bruno Luong
2020 年 9 月 23 日
for each column number j,
A*V = B*V*D
implies
A*xj = lambdaj*B*xj
where
xj = V(:,j)
lambdaj = D(j,j)
This is just a generalization of normal eigen value problem.
A*xj = lambdaj*xj
If B is invertible, V and D is the same as standard eigen vectors/values of M := inv(B)*A.
0 件のコメント
その他の回答 (1 件)
Steven Lord
2020 年 9 月 23 日
You might find the "Eigenvalues and Singular Values" chapter in Cleve Moler's Numerical Computing with MATLAB, available here, useful.
0 件のコメント
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!