How to solve this problem? Error using == Quadratic constraints not supported

1 回表示 (過去 30 日間)
Hi everyone
I have a optimazation problem using "optimproblem". The problem is constraint. The constraint I need is x*x + y*y ==1.
x = optimvar('x');
y = optimvar('y');
prob = optimproblem;
prob.Objective = (((x*((K*x)+(K*y)))+(y*((K*x)+(K*y)))) - ((2*F*x))+((2*F*y)));
prob.Constraints.cons1 = x*x + y*y == 1;
sol = solve(prob);
The error messages as follows
Error using ==
Quadratic constraints not supported.
error in ..... (Line 237)
prob.Constraints.cons1=x*x + y*y ==1;
could you help me to fix this problem?
Thanks! Intho

採用された回答

Abdolkarim Mohammadi
Abdolkarim Mohammadi 2020 年 9 月 17 日
編集済み: Abdolkarim Mohammadi 2020 年 9 月 17 日
QP = Quadradic Programming = Quadradic objective function and linear constraints.
QCQP = Quadratically Constrained Quadratic Programming = Quadradic objective function and quadradic constraints.
quadprog() solves QP problems, but you are defining a QCQP problem. QCQP can be solved using the combination of quadprog() and fmincon() as described in the following:

その他の回答 (1 件)

Walter Roberson
Walter Roberson 2020 年 9 月 19 日
x*x + y*y == 1
Reduce the number of variables by replacing y with +/- sqrt(1-x^2) . Run twice, once with y being the positive root, and once with y being the negative root, and choose the best of the two.
If K and F are independent of x and y, then you can use calculus: differentiate with respect to x and solve for the zeros.
The roots for the + and - branch come out nearly exactly the same. Both of the branches have roots
(-F +/- sqrt(-F^2 + 2*K^2))/(2*K)
The + branch has root -1/sqrt(2) and the - branch has root +1/sqrt(2)
You would want to verify that these roots are indeed minima and not maxima.

カテゴリ

Help Center および File ExchangeQuadratic Programming and Cone Programming についてさらに検索

製品


リリース

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by