Least squares regression to find coefficients

1 回表示 (過去 30 日間)
Tyler Bodnarik
Tyler Bodnarik 2020 年 9 月 15 日
回答済み: Asad (Mehrzad) Khoddam 2020 年 9 月 15 日
Not sure what to do here. I tried doing it all seperately by setting noise to 0, then to 50, then 100 and using polyfit but I get the same answer everytime. I also tried using the backslash.
y(𝑥)=𝑝1+𝑝2𝑥
where
x = 0:0.1:20;
noise =?? % a number, to define
y= 4*x + noise*rand(1,length(x));
Vary the value for noise as 0, 50 and 100 to get three different results for 𝑝1and 𝑝2,
From a linear algebra standpoint, determine the coefficients, 𝑝1and 𝑝2, of the least-squares-regression of a line fit through the data defined above.

回答 (1 件)

Asad (Mehrzad) Khoddam
Asad (Mehrzad) Khoddam 2020 年 9 月 15 日
one solution is:
[length(x) sum(x); sum(x) sum(x.^2)]\[sum(y) ; sum(x.*y)]

カテゴリ

Help Center および File ExchangeLinear and Nonlinear Regression についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by