Deep Learning Experiment Manager results are not reproducable

1 回表示 (過去 30 日間)
Raphael Rottshäfer
Raphael Rottshäfer 2020 年 9 月 11 日
コメント済み: Khoo Yit Phang 2020 年 9 月 11 日
So I use the Experiment Manager (EM) for a regression project.
While, when I repeat the same experiment with the EM the resulting table shows very similar results in regards of the Validation RMSE. The label to predict represents 24 (hourly) energy prices of the next day.
Nevertheless whenever I use the same hyperparameter settings within my ordinary live script (pretty much the exact same code as the EM setup), I will get much worse Val RMSE - like by a factor of 2.
Is it possible, that the EM calculates the RMSE another way, than the ordinary Live Script / Visualization does?
  1 件のコメント
Khoo Yit Phang
Khoo Yit Phang 2020 年 9 月 11 日
Experiment Manager should give you the same results as it calls trainNetwork under the hood. E.g., you should get the same results by calling your setup function and trainNetwork directly:
params.myLearningRate = 0.05;
[datastore, layergraph, options] = mySetupFunction(params);
[net, info] = trainNetwork(datastore, layergraph, options);
disp(info.FinalValidationRMSE);
Can you try the above and see if it gives you similar results?

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by