Multi-input imagedatastore

21 ビュー (過去 30 日間)
OJ27
OJ27 2020 年 8 月 31 日
コメント済み: Mohammad Sami 2020 年 10 月 21 日
I am trying to train a network with N inputs to perform binary classification. Each image is multispectral (more than 3 channels rgb). I read in a comment from mathworks staff which creates data and stores it in a datastore to train a network with two inputs: image and vector data.
I have also looked at the example Image Classification using CNN with Multi Input, which uses two inuts to classify digits.
Both of these examples do not use imageDatastore. I was wondering if we could use
combine
to combine the imageDatastore for each data sample. I read in Datastores for Deep Learning that the datastore must be a combined or transformed datastore that returns a cell array with (numInputs+1) columns containing the predictors and the responses, where numInputs is the number of network inputs and numResponses is the number of responses.
My question is the following. Can I have multiple imageDatastore objects and combine them? If so, how do I store the label column? I tried the code below and got an error.
imds1 = imageDatastore(...);
imds2 = imageDatastore(...);
labels = ???
datastore = combine(imds1, imds2, labels);
Usually, we can assign the label through imds1.Labels. I also want to know if once combined, data augmentation can be done on the images and random split for training and validation.

回答 (1 件)

Mohammad Sami
Mohammad Sami 2020 年 9 月 5 日
編集済み: Mohammad Sami 2020 年 9 月 5 日
You can save the labels as a text file and then create a tabularTextDatastore to read them back.
Something like this could work.
read_size = 4; % readsize must be fixed otherwise concatenation will fail
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet', ...
'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
imds.ReadSize = read_size;
labels = imds.Labels; % your labels here
% the order of your images and label must be the same
writematrix(labels,'labels.txt');
% %C = categorical
labelStore = tabularTextDatastore('labels.txt','TextscanFormats','%C',"ReadVariableNames",false);
labelStore.ReadSize = read_size;
labelStoreCell = transform(labelStore,@setcat_and_table_to_cell);
finalStore = combine(imds,labelStoreCell);
% test read
finalStore.read
You will also need to correct the categorical array categories during transformation.
function [dataout] = setcat_and_table_to_cell(datain)
validcats = string(0:9); % define valid labels for categorical array
datain.(1) = setcats(datain.(1),validcats);
dataout = table2cell(datain);
end
  9 件のコメント
Girish Tiwari
Girish Tiwari 2020 年 10 月 20 日
編集済み: Girish Tiwari 2020 年 10 月 20 日
Thanks M. Sami. Works like a charm.
However, I am getting an error while training the network with the datastore as "The output size (7) of the last layer does not match the number of classes (10)".
I have verified that there are only 7 labels and fullyconnected layer also has 7 outputs.
(See my code at: https://www.mathworks.com/matlabcentral/answers/619943-invalid-training-data-the-output-size-7-of-the-last-layer-does-not-match-the-number-of-classes-1)
Mohammad Sami
Mohammad Sami 2020 年 10 月 21 日
It's because we set the 10 categories in the setcat_and_table_to_cell.
You should change the variable validcats to the appropriate 7 categories for your case.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by