Solve ODE via Midpoint rule nonlinear system

8 ビュー (過去 30 日間)
Mathematica
Mathematica 2020 年 8 月 15 日
コメント済み: Mathematica 2020 年 8 月 15 日
Hey ,
I have the following nonlinear system.
And I'd like to approximate the solution via the midpoint rule , that is
I choose the stepsize h=0.01. x_{n+1} denotes the solution at time t=h(n+1).
I did the following:
fun=@root2d;
x0=[20,20];
sol=fsolve(@(x)root2d(x,20,20),x0)
function F=root2d(x,xold,yold)
F(1)=x(1)-xold-dt*((1/2)*(x(1)+xold)-A*(1/2)*(x(1)+xold)*(x(2)+yold));
F(2)=x(2)-yold-dt*(-(1/2)*(x(2)+yold)+B*(1/2)*(x(1)+xold)*(x(2)+yold));
end
but I keep getting the error code
Caused by:
Failure in initial objective function evaluation. FSOLVE cannot continue.
Actually , I was quite confused anyway when I tried to implement it since I was not sure how to deal with the initial values and it seems like i incoorporated them twice..I hope somebody can help me !
Thanks.

採用された回答

Alan Stevens
Alan Stevens 2020 年 8 月 15 日
You can do it this way:
A = 0.01;
B = 0.01;
dt = 0.01;
t = 0:dt:20;
x = zeros(size(t));
y = zeros(size(t));
x(1) = 20;
y(1) = 20;
for i = 1:length(t)-1
xnew = x(i); ynew = y(i);
err = 1;
while err > 10^-6
xold = xnew; yold = ynew;
xav = (xnew+x(i))/2;
yav = (ynew+y(i))/2;
xnew = x(i) + dt*(xav - A*xav*yav);
ynew = y(i) + dt*(-yav + B*xav*yav);
err = max(abs(xnew-xold), abs(ynew-yold));
end
x(i+1) = xnew;
y(i+1) = ynew;
end
plot(t,x,t,y)
xlabel('t'),ylabel('x and y')
legend('x','y')
to get:
  1 件のコメント
Mathematica
Mathematica 2020 年 8 月 15 日
Thank you so much !! Appreciate it a lot!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeProgramming についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by