Plotting a contour plot for a variable dependednt on the while loop

1 回表示 (過去 30 日間)
asd ad
asd ad 2020 年 8 月 8 日
コメント済み: asd ad 2020 年 8 月 8 日
Hello everyone,
I'm currently running a code to see how long does it take for a range of volume to reach 0 for different relative humidities and I'm trying to plot a contour plot for the values with Volume on the y-axis and Relative humidity on the x axis and the time taken on the right side. For some reason, my volume doesn't seem to converge and the code won't stop running. Does anyone know why?
Thanks in advance
clear all
close all
clc
%% Inputs
IR = 1e-3; %initial radius [m]
Rho = 1000; %density [kg/m^3]
T = 23.5; %temperature [celsius]
% Loop 1
aInitial = 1;
aStep = 1;
aMax = 25;
VMin = 1e-12; %minimum volume [m^3]
VMax = 2e-9; %maximum volume [m^3]
% Loop 2
bInitial = 1;
bStep = 1;
bMax = 25;
ReHuMin = 0.0; %minimum relative humidity [m]
ReHuMax = 0.9; %maximum relative humidity [m]
% Loop 3
c = 1;
tInitial = 0; %initial time [s]
tStep = 1; %final time [s]
D_T = 2.5e-4*exp(-684.15/(T+273.15)); %coefficient [m^2/s]
c_sat = (9.99e-7)*T^3 - (6.94e-5)*T^2 + (3.2e-3)*T - 2.87e-2; %concentration [kg/m^3]
%% Computing
for a = aInitial:aStep:aMax
for b = bInitial:bStep:bMax
Vol(a,b) = VMin + (VMax - VMin)*(a-aInitial)/(aMax);
h(a,b) = ((sqrt(pi^2*IR^6 + 9*(Vol(a,b))^2) + 3*(Vol(a,b)))^(2/3) - pi^(2/3)*IR^2)/(pi^(1/3)*(sqrt(pi^2*IR^6 + 9*(Vol(a,b))^2) + 3*(Vol(a,b)))^(1/3));
CAR(a) = 2*atan(h(a,b)/IR);
CAD(a) = CAR(a)*180/pi;
RH(a,b) = ReHuMin + (ReHuMax - ReHuMin)*(b - bInitial)/(bMax);
h(c,a,b) = h(a,b);
CAR(c,a,b) = CAR(a);
Vol(c,a,b) = Vol(a,b);
timeSec(c,a,b) = tInitial;
while Vol(c,a,b) > 0
M_dot(c,a,b) = -pi*IR*D_T*(1 - RH(a,b))*c_sat*(0.27*CAR(c,a,b)^2+1.30); %mass flow
Mkg(c,a,b) = M_dot(c,a,b)*tStep; %mass loss at each time step [kg]
Vm3(c,a,b) = Mkg(c,a,b)/Rho; %volume loss [m^3]
Vol(c+1,a,b) = Vol(c,a,b) + Vm3(c,a,b); %new volume [m^3]
h(c+1,a,b) = ((sqrt(pi^2*IR^6 + 9*(Vol(c+1,a,b))^2) + 3*(Vol(c+1,a,b)))^(2/3) - pi^(2/3)*IR^2)/(pi^(1/3)*(sqrt(pi^2*IR^6 + 9*(Vol(c+1,a,b))^2) + 3*(Vol(c+1,a,b)))^(1/3)); %new height [m]
CAR(c+1,a,b) = 2*atan(h(c+1,a,b)/IR); %new angle [radians]
CAD(c+1,a,b) = CAR(c+1,a,b)*180/pi; %new angle [degrees]
timeSec(c+1,a,b) = tInitial + tStep*(c - 1);
c = c + 1;
end
EvaporationTime(a,b) = timeSec(c,a,b);
c = 1;
end
end
%% Plotting
contourf(RH*100,Vol*1e9,EvaporationTime)
c = colorbar;
c.Label.String = 'Evaporation Time (s)';
xlabel('Relative Humidity (%)')
ylabel('Volume (mm^3)')

採用された回答

Alan Stevens
Alan Stevens 2020 年 8 月 8 日
I'm not sure if I've interpreted your requirements correctly, but what about the following:
%% Inputs
IR = 1e-3; %initial radius [m]
Rho = 1000; %density [kg/m^3]
T = 23.5; %temperature [celsius]
% Loop 1
aInitial = 1;
aStep = 1;
aMax = 25;
VMin = 1e-12; %minimum volume [m^3]
VMax = 2e-9; %maximum volume [m^3]
% Loop 2
bInitial = 1;
bStep = 1;
bMax = 25;
ReHuMin = 0.0; %minimum relative humidity [m]
ReHuMax = 0.9; %maximum relative humidity [m]
% Loop 3
c = 1;
tInitial = 0; %initial time [s]
tStep = 1; %final time [s]
D_T = 2.5e-4*exp(-684.15/(T+273.15)); %coefficient [m^2/s]
c_sat = (9.99e-7)*T^3 - (6.94e-5)*T^2 + (3.2e-3)*T - 2.87e-2; %concentration [kg/m^3]
%% Computing
for a = aInitial:aStep:aMax
Va = VMin + (VMax - VMin)*(a-aInitial)/(aMax);
for b = bInitial:bStep:bMax
V(a,b) = Va; %Initial volume
Vol(a,b) = Va;
h(a,b) = ((sqrt(pi^2*IR^6 + 9*(Vol(a,b))^2) + 3*(Vol(a,b)))^(2/3) - pi^(2/3)*IR^2)/(pi^(1/3)*(sqrt(pi^2*IR^6 + 9*(Vol(a,b))^2) + 3*(Vol(a,b)))^(1/3));
CAR(a,b) = 2*atan(h(a,b)/IR);
CAD(a,b) = CAR(a,b)*180/pi;
RH(a,b) = ReHuMin + (ReHuMax - ReHuMin)*(b - bInitial)/(bMax);
timeSec(a,b) = tInitial;
Vold = 0; c = 0;
while Vol(a,b)>VMin && c<10000
Vold = Vol(a,b);
M_dot(a,b) = -pi*IR*D_T*(1 - RH(a,b))*c_sat*(0.27*CAR(a,b)^2+1.30); %mass flow
Mkg(a,b) = M_dot(a,b)*tStep; %mass loss at each time step [kg]
Vm3(a,b) = Mkg(a,b)/Rho; %volume loss [m^3]
Vol(a,b) = Vol(a,b) + Vm3(a,b); %new volume [m^3]
Vol(a,b) = max(Vol(a,b), VMin);
h(a,b) = ((sqrt(pi^2*IR^6 + 9*(Vol(a,b))^2) + 3*(Vol(a,b)))^(2/3) - pi^(2/3)*IR^2)/(pi^(1/3)*(sqrt(pi^2*IR^6 + 9*(Vol(a,b))^2) + 3*(Vol(a,b)))^(1/3)); %new height [m]
CAR(a,b) = 2*atan(h(a,b)/IR); %new angle [radians]
CAD(a,b) = CAR(a,b)*180/pi; %new angle [degrees]
timeSec(a,b) = tStep*c;
c = c + 1;
end
EvaporationTime(a,b) = timeSec(a,b);
end
end
%% Plotting
contourf(RH*100,V*1e9,EvaporationTime) % plot against Initial volume not final volume
k = colorbar;
k.Label.String = 'Evaporation Time (s)';
xlabel('Relative Humidity (%)')
ylabel('Initial Volume (mm^3)')
figure
surf(RH*100,V*1e9,EvaporationTime)
k = colorbar;
k.Label.String = 'Evaporation Time (s)';
xlabel('Relative Humidity (%)')
ylabel('Initial Volume (mm^3)')
zlabel('Evaporation Time (s)')
  1 件のコメント
asd ad
asd ad 2020 年 8 月 8 日
Thanks a lot Alan Stevens. It works! You're a lifesaver. I've been at it for the past 2 days and didn't know where I'm going wrong

サインインしてコメントする。

その他の回答 (1 件)

Alan Stevens
Alan Stevens 2020 年 8 月 8 日
Your code doesn't stop because Vol never reaches zero.
What does the c index do for you?
Your contour function won't plot while you have RH and EvaporationTime as 2d matrices with Vol as a 3d matrix.
  1 件のコメント
asd ad
asd ad 2020 年 8 月 8 日
The cindex is just for the time step of the while loop. I might have coded it wrong as well. Is there a better way to do it?
Thanks

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeSurface and Mesh Plots についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by