Resolve normal depth from Manning's equation
13 ビュー (過去 30 日間)
古いコメントを表示
Hello,
I aim to obtain the normal depth of a channel using Mannig's equation. Somehow I don't manage to resolve its value. Here it's the pieco of code that I'm using:
riverSlope=0.0114; % [m/m] - inletSlope, outletSlope or riverSlope
bottom_width=33.5937; % [m] - inlet or outlet bottom width
slope_Rbank=1.1336; % [m/m] - slope_Rbank_in or slope_Rbank_out
slope_Lbank=0.3334; % [m/m] - slope_Lbank_in or slope_Lbank_out
q=10; % [m3/s] - Flow discharge
n=0.04; % [-] - Manning's roughness coefficient
syms y
area=(bottom_width+(y/(2*slope_Rbank))+(y/(2*slope_Lbank)))*y;
wetted_perimeter=bottom_width+y*(sqrt(1+(1/slope_Rbank)^2)+sqrt(1+(1/slope_Lbank)^2));
manning_eqn=@(y)(1/n)*((area/wetted_perimeter)^(2/3))*(riverSlope^(1/2))*area==q;
soly=solve(manning_eqn,y)
I would really appreciate if someone can help to fix it in order to obtain the desired values and avoid the coding of an iteration loop for the manual calculation. Thanks in advance!!
Álvaro
0 件のコメント
採用された回答
Alan Stevens
2020 年 8 月 1 日
編集済み: Alan Stevens
2020 年 8 月 1 日
This shoud do it:
depth0 = 1; % Initial guess
depth = fzero(@manningfn, depth0);
function manning = manningfn(y)
riverSlope=0.0114; % [m/m] - inletSlope, outletSlope or riverSlope
bottom_width=33.5937; % [m] - inlet or outlet bottom width
slope_Rbank=1.1336; % [m/m] - slope_Rbank_in or slope_Rbank_out
slope_Lbank=0.3334; % [m/m] - slope_Lbank_in or slope_Lbank_out
q=10; % [m3/s] - Flow discharge
n=0.04; % [-] - Manning's roughness coefficient
area=(bottom_width+(y/(2*slope_Rbank))+(y/(2*slope_Lbank)))*y;
wetted_perimeter=bottom_width+y*(sqrt(1+(1/slope_Rbank)^2)+sqrt(1+(1/slope_Lbank)^2));
manning = (1/n)*((area/wetted_perimeter)^(2/3))*(riverSlope^(1/2))*area-q;
end
3 件のコメント
Alan Stevens
2020 年 8 月 1 日
Yes, you could do this:
riverSlope=0.0114; % [m/m] - inletSlope, outletSlope or riverSlope
bottom_width=33.5937; % [m] - inlet or outlet bottom width
slope_Rbank=1.1336; % [m/m] - slope_Rbank_in or slope_Rbank_out
slope_Lbank=0.3334; % [m/m] - slope_Lbank_in or slope_Lbank_out
q=10; % [m3/s] - Flow discharge
n=0.04; % [-] - Manning's roughness coefficient
data =[riverSlope; bottom_width; slope_Rbank; slope_Lbank; q; n];
depth0 = 1; % Initial guess
depth = fzero(@manningfn, depth0,[],data);
function manning = manningfn(y, data)
riverSlope=data(1);
bottom_width=data(2);
slope_Rbank=data(3);
slope_Lbank=data(4);
q=data(5);
n=data(6);
area=(bottom_width+(y/(2*slope_Rbank))+(y/(2*slope_Lbank)))*y;
wetted_perimeter=bottom_width+y*(sqrt(1+(1/slope_Rbank)^2)+sqrt(1+(1/slope_Lbank)^2));
manning = (1/n)*((area/wetted_perimeter)^(2/3))*(riverSlope^(1/2))*area-q;
end
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Numerical Integration and Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!