Input Data format in deep learning

4 ビュー (過去 30 日間)
DL
DL 2020 年 7 月 2 日
回答済み: Divya Gaddipati 2020 年 7 月 22 日
Hi,
I just want to set a feature vector (size is 256 * 1) as the input of DNN, which kind of layer should I use?
I saw there are only 4, imginput, img3dimput, sequenceinput, roilinput.
And If the output (label) is also a vector (size 252 * 1 and classification), what kind of data fromat should the label be? I saw from the instruction it's cell but there's always an error saying Invalid training data. The response must be a vector of categorical responses, or a cell array of categorical response sequences. Can you help me a little bit?
Thanks
  1 件のコメント
DL
DL 2020 年 7 月 2 日
Sequence-to-sequence classification

サインインしてコメントする。

採用された回答

Divya Gaddipati
Divya Gaddipati 2020 年 7 月 22 日
Hi,
If you're doing a sequence-to-sequence classification, for the input layer, you have to use the sequenceInputLayer and for the output, you can use a classificationLayer.
You can refer to the following example on Sequence-to-sequence classification for more information:

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by