Solving second order PDE

23 ビュー (過去 30 日間)
Lotuny Lee
Lotuny Lee 2020 年 6 月 26 日
編集済み: Lotuny Lee 2020 年 6 月 27 日
Hi, I am trying to solve the following pde with initial condition CA(0,r)=0 and boundary conditions CA(t,0)=F(t) and CA(t,5)=0.
, where D_A and gamma_A are known constants.
I tried using pdepe but was told that left boundary condition would be ignored when m=1 (cylindrical symmetry).
Then I tried discretizing space variable r before using ode15s, but was confused about how to construct the equation exactly.
Can anybody help?
  2 件のコメント
darova
darova 2020 年 6 月 27 日
Can you please exaplain more about your equation?
Is it
or
Lotuny Lee
Lotuny Lee 2020 年 6 月 27 日
編集済み: Lotuny Lee 2020 年 6 月 27 日
@darova Hi, it is a reaction-diffusion equation. And I believe the middle part should be .

サインインしてコメントする。

採用された回答

Bill Greene
Bill Greene 2020 年 6 月 27 日
編集済み: Bill Greene 2020 年 6 月 27 日
The reason that pdepe imposes a boundary condition of the flux equal zero at the
center is that this is required for the problem to be mathematically well-posed.
Imposing a prescribed temperature at the center would require that the flux go to
infinity there.
An easy way to understand this is to solve the problem with the left end a small distance
from the center and with a fine mesh. I have attached a short script below that shows this.
function matlabAnswers_6_27_2020
r0=1e-6;
x = linspace(r0,1,1000);
tf=1;
t = linspace(0,tf,40);
pdeFunc = @(x,t,u,DuDx) heatpde(x,t,u,DuDx);
icFunc = @(x) heatic(x);
bcFunc = @(xl,ul,xr,ur,t) heatbcDirichlet(xl,ul,xr,ur,t);
m=1;
sol = pdepe(m, pdeFunc,icFunc,bcFunc,x,t);
figure; plot(t, sol(:,end)); grid on; title 'Temperature at outer surface'
figure; plot(t, sol(:,1)); grid on; title 'Temperature at center'
figure; plot(x, sol(end,:)); grid; title 'Temperature at final time'
end
function [c,f,s] = heatpde(x,t,u,DuDx)
c = 1;
f = DuDx;
s = 0;
end
function u0 = heatic(x)
u0 = 0;
end
function [pl,ql,pr,qr] = heatbcDirichlet(xl,ul,xr,ur,t)
pl = ul-1;
ql = 0;
pr = 0;
qr = 1;
end
  1 件のコメント
Lotuny Lee
Lotuny Lee 2020 年 6 月 27 日
Thanks a lot! This looks like a feasible alternative.

サインインしてコメントする。

その他の回答 (1 件)

J. Alex Lee
J. Alex Lee 2020 年 6 月 27 日
I believe that pdepe is available with base matlab.
It appeas to be able to do the space discretization automatically for you if you
  1 件のコメント
Lotuny Lee
Lotuny Lee 2020 年 6 月 27 日
Thanks for answering, but my issue with pdepe is that my boundary condition would be ignored.

サインインしてコメントする。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by