ode45 third order ode

28 ビュー (過去 30 日間)
matlab
matlab 2020 年 6 月 22 日
回答済み: Ameer Hamza 2020 年 6 月 22 日
how to solve
f''' = { [3 * f' * (f'')^2] / [(f')^2 + 1]^(5/2) + 1/f^3 - 1/f^2 + 3} * { [(f')^2 + 1]^(3/2) }
using ode45
with
f(0) = 1.1
f'(0) = 17.1
f''(0) = 144.1

採用された回答

Ameer Hamza
Ameer Hamza 2020 年 6 月 22 日
Use ode45(). this ODE can be written as a system of 3 first-order ODEs
odeFun = @(t, y) [y(2);
y(3);
((3*y(2).*y(3).^2)./(y(2).^2 + 1).^(5/2) + 1./y(1).^3 - 1/y(1).^2 + 3).*((y(2).^2 + 1).^(3/2))];
tspan = [0 1];
ic = [1.1; 17.1; 144.1];
[t, y] = ode45(odeFun, tspan, ic);
plot(t, y);
However, it seems that the ODE is unstable, and the solution diverges to infinity. You may check if the equation is written correctly.

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by