ode45 third order ode
28 ビュー (過去 30 日間)
古いコメントを表示
how to solve
f''' = { [3 * f' * (f'')^2] / [(f')^2 + 1]^(5/2) + 1/f^3 - 1/f^2 + 3} * { [(f')^2 + 1]^(3/2) }
using ode45
with
f(0) = 1.1
f'(0) = 17.1
f''(0) = 144.1
0 件のコメント
採用された回答
Ameer Hamza
2020 年 6 月 22 日
Use ode45(). this ODE can be written as a system of 3 first-order ODEs
odeFun = @(t, y) [y(2);
y(3);
((3*y(2).*y(3).^2)./(y(2).^2 + 1).^(5/2) + 1./y(1).^3 - 1/y(1).^2 + 3).*((y(2).^2 + 1).^(3/2))];
tspan = [0 1];
ic = [1.1; 17.1; 144.1];
[t, y] = ode45(odeFun, tspan, ic);
plot(t, y);
However, it seems that the ODE is unstable, and the solution diverges to infinity. You may check if the equation is written correctly.
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!