浅いニューラルネット​ワークのミニバッチト​レーニング

6 ビュー (過去 30 日間)
Hiroki Murakami
Hiroki Murakami 2020 年 6 月 18 日
コメント済み: Naoya 2020 年 7 月 2 日
現在,関数近似ニューラルネットワークを作成しようとしています.
そこでミニバッチで学習をしようとしていますが,trainではサポートされていないのでしょうか?
trainNetworkでしか実行できないのでしょうか?

採用された回答

Naoya
Naoya 2020 年 6 月 19 日
残念ながら Deep Learning Toolboxの Shallow Nural Network (train関数ベース)においては、ミニバッチサイズを設定するオプションはありません。
よろしければ、trainNetwork関数ベースの学習の使用をご検討ください。
  2 件のコメント
Hiroki Murakami
Hiroki Murakami 2020 年 6 月 19 日
ありがとうございます.
trainNetwork関数ベースを用いる場合,関数近似ニューラルネットワークを作成することは可能でしょうか?もし例などございましたらご教示お願い致します。
Naoya
Naoya 2020 年 7 月 2 日
簡単な例で恐れ入りますが、trainNetworkベースでの回帰モデル例を示します。
入出力データ共に乱数としており、精度面は考慮していません。
あくまでもフローについてまでの例となります
% 回帰用 NN layers の作成
layers = [...
imageInputLayer([3,1,1]); % 入力 3ユニット
fullyConnectedLayer(10);
tanhLayer();
fullyConnectedLayer(3);
regressionLayer];
% 入力と教師データの作成
X = randn(3,1,1,1000); % 3入力 / 1000 パターン分
Y = rand(1000,3); % 3出力 / 1000パターン分
% 学習オプション
options = trainingOptions('sgdm', ...
'MiniBatchSize',100,...
'MaxEpochs',100,...
'InitialLearnRate',1e-4, ...
'Verbose',false, ...
'Plots','training-progress');
% 学習
net = trainNetwork(X,Y,layers,options);
% 予測 (新規3入力分を適用)
predict(net, rand(3,1))

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File Exchangeイメージを使用した深層学習 についてさらに検索

製品


リリース

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!