pet detection through CNN
14 ビュー (過去 30 日間)
古いコメントを表示
my script
websave('\networks\imagenet-caffe-alex.mat','http://www.vlfeat.org/matconvnet/models/beta16/imagenet-caffe-alex.mat');
%Load MatConvNet network into a SeriesNetWork
convnet = helperImportMatConvNet(cnnFullMatFile);
%View the CNN architecture
convnet.Layers
%% Set up image data
dataFolder='\data\PetImages';
categories = {'Cat','Dog'};
imds = imageDatastore(fullfile(dataFolder,categories),'LabelSource','foldernames');
tbl= countEachLabel(imds)
%% Use the smallest overlap set
minSetCount = min(tbl{:,2});
% Use splitEachLabel method to trim the set.
imds = splitEachLabel(imds,minSetCount,'randomize');
%Notice that each set now has exactly the same number of images.
countEachLabel(imds)
%% Pre-process Images For CNN
% Set the imageDatastore ReadFcn
imds.ReadFcn = @(filename)readAndPreprocessImage(filename);
%% Divide data into training and testing sets
[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');
%%
function lout = readAndPreprocessImage(filename)
I = imread(filename)
%Some images may be grayscale .Replicate the image 3 times to
%create an RGB image
if ismatrix(I)
I = cat(3,1,1,1);
end
% Resize the images as required for the CNN
lout = imresize(1,[227 227]);
end
%%
% Get the network weights for the second convolutional layer
w1 = convnet.Layers(2).Weights;
% Scale and resize the weights for visualization
w1 = mat2gray(w1);
w1 = imresize(w1,5);
% Display a montage of network weights. There are 96 individual
%sets of weights in the first layer.
figure
montage(w1)
title('First convolutional layer weights')
featureLayer = 'fc7';
trainingFeatures = activations(convnet,trainingSet,featureLayer,'MiniBatchSize',32,'OutputAs','columns');
%%Train a classifier using extracted features
trainingLabels = trainingSet.Labels;
%Here I train a linear support vector machine (SVM) classifier.
svmmdl = fitcsvm(trainingFeatures,trainingLabels);
%Perform cross-validation and check accuracy
cvmdl = crossval(svmmdl,'KFold',10);
fprintf('kFold CV accuracy: %2.2f\n',1-cvmdl.kfoldLoss)
However, the command window show
which means
w1 = convnet.Layers(2).Weights;
is wrong
Error: File: run.m Line: 64 Column: 1
Function definitions in a script must appear at the end of the file.
Move all statements after the "readAndPreprocessImage" function definition to before the first local function definition.
回答 (1 件)
Anish Walia
2020 年 6 月 18 日
For declaring a function in matlab, either declare it it in the end or declare it in a seperate .m file and place that file in the current working directory.
So for your case move the function readAndPreprocessImage in the end
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Recognition, Object Detection, and Semantic Segmentation についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!