solving trascendental equations, proper setting
1 回表示 (過去 30 日間)
古いコメントを表示
Hello everybody,
I'd like to solve for y = y(x) the following equation
d log( y ) / d x + y = 1 + f
with f = f(x).
f is a 1D numerically known array, I don't know its nalytical form.
I cannot set properly solve or fzero.
Can you help me, please?
Patrizio
0 件のコメント
採用された回答
Ameer Hamza
2020 年 6 月 14 日
編集済み: Ameer Hamza
2020 年 6 月 14 日
This is a differential equation and you can use symbolic toolbox to find an anayltical solution
syms y(x) f
eq = diff(log(y), x) + y == 1 + f;
sol = dsolve(eq);
Result
>> sol
sol =
(exp((C1 + x)*(f + 1))*(f + 1))/(exp((C1 + x)*(f + 1)) + 1)
f + 1
Following shows how to get a numerical solution using ode45
syms y(x) f
eq = diff(log(y), x) + y == 1 + f;
sol = dsolve(eq);
odeFun = matlabFunction(odeToVectorField(eq), 'Vars', {'t', 'Y', 'f'});
tspan = [0 10]; % time span for numerical solution
ic = 1; % initial condition: y(0)==1
fv = 1; % numerical solution for f=1
[t, y] = ode45(@(t, y) odeFun(t, y, fv), tspan, ic);
plot(t, y);
7 件のコメント
Ameer Hamza
2020 年 6 月 17 日
I am glad that it worked for your case, and you got the results. Good luck with your research.
その他の回答 (0 件)
参考
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!