How can I find the Power spectral density of a filtered Noise?
2 ビュー (過去 30 日間)
古いコメントを表示
I have this following code of generating noise and filtering it.. However I ailrd to plot its PSD of filtered Noise, as mentioned in coments?
N=2^10;
time=1:1:N;
time=time*1e-3;
time=time/N;
size(time)
bandwidth=100e3;
irn=10e-9;
plotting=1;
noisebw=(1/(max(time)/length(time)) )/2;
%%% SENSOR DATA
ws=(noisebw)/bandwidth;
Wn=1/ws;
[b,a] = butter(2,Wn,'low');
VN1=irn*sqrt(bandwidth);
VN2=sqrt(ws);
noise1=VN1*randn(size(time));
noise2=filter(b,a,noise1);
noise3=VN2*noise2; % filtered Noise
if plotting
figure(100);
plot(time,noise1,'-k','Linewidth',2);
hold on;
plot(time,noise2,'-y','Linewidth',2);
plot(time,noise3,'-m','Linewidth',2);
grid on;
legend('noise high bw','filtered','noise low bw');
title('noise source function outputs');
end
0 件のコメント
回答 (1 件)
Ameer Hamza
2020 年 6 月 6 日
編集済み: Ameer Hamza
2020 年 6 月 6 日
This example show how to plot PSD using FFT: https://www.mathworks.com/help/signal/ug/power-spectral-density-estimates-using-fft.html
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Parametric Spectral Estimation についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!