Integration of a function with modified Bessel function of the first kind.

2 ビュー (過去 30 日間)
Anthony Koussaifi
Anthony Koussaifi 2020 年 6 月 2 日
編集済み: David Goodmanson 2020 年 6 月 10 日
Hi,
I want to create the function mentioned below on matlab:
Where all the variables are defined numbers (k,s=1,p=6,nc=84,..), W`k is a complex vector and Iν(z) is the modified Bessel function of the first kind.
The integral is function of z.
I'm trying to get the intergral values(not considering the log factor in this case).
f = @(z) ((exp(-s.*z.*((p.*nc)+Sigma2^-2)))./((norm(avg_ww(kk,:)).*sqrt(p.*nc.*z)).^(nc-1))).*besseli(nc-1,2.*s.*(norm(avg_ww(kk,:)).*sqrt(p.*nc.*z))).*besseli(0,2.*s.*(1./Sigma2).*sqrt(z.*abs(Uh)^2));
upper_limit = linspace(0.1,40); % upper limit of the integral (randomly chosen)
xval = arrayfun(@(uplim) integral(f, 0, uplim, 'ArrayValued',true), upper_limit);
Can you please advise if my integration is correct? because it doesn't feel like it
  2 件のコメント
David Goodmanson
David Goodmanson 2020 年 6 月 2 日
編集済み: David Goodmanson 2020 年 6 月 10 日
Hi Anthony,
Youd had better go back and check your parentheses placements, because right now I_0(...) is part ot the argument of the I_(nc-1) bessel function. That may not be the only bad one, I don't know.
Anthony Koussaifi
Anthony Koussaifi 2020 年 6 月 2 日
Hi David,
Thank you for this remarque, kindly note that I fixed it in my code and the original post.
I will try to run a few test, and come back with a feedback
Thank you again!

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeBessel functions についてさらに検索

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by