how to improve accuracy in matlab.?

8 ビュー (過去 30 日間)
Ronak Patel
Ronak Patel 2020 年 5 月 30 日
編集済み: vaibhav mishra 2020 年 6 月 30 日
Here code below attachment its my accuracy image i want accuracy 90% above can u help how to improve my accuracy.?
clear
clc
imds = imageDatastore('E:\MATLAB\coursework\dataset\BloodCellDataSet','IncludeSubfolders',true, ...
'FileExtensions','.jpeg','LabelSource','foldernames');
figure;
perm = randperm(9957,20);
for i = 1:20
subplot(4,5,i);
%imshow(imds.Files{i});
imshow(imds.Files{perm(i)});
end
label = countEachLabel(imds);
minsetcount = min(imds.countEachLabel{:,2});
trainingNumfiles = round(minsetcount);
rng(1);
[imdsTrain,imdsValidation] = splitEachLabel(imds,trainingNumfiles,'randomize');
inputSize=[240 320 3];
netLayers = [
imageInputLayer(inputSize)
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(4)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.001, ...
'MaxEpochs',6, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,netLayers,options);
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation);
  1 件のコメント
Walter Roberson
Walter Roberson 2020 年 5 月 30 日
I used to be involved with a lot of data classification work. We never got into Deep Learning, but with the other techniques we used, even with complicated automatic determination of methods, getting 90% or more was very rare. Getting above roughly 84% was uncommon

サインインしてコメントする。

回答 (1 件)

vaibhav mishra
vaibhav mishra 2020 年 6 月 30 日
編集済み: vaibhav mishra 2020 年 6 月 30 日
hi, ways to improve your validation accuracy are to apply regularization on your loss, or to apply some dropout so that model generalizes well and if possible try to decrease the learning rate, or use more training data.
You can use above methods to see the increase in your accuracy.

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by