need help with the collocation method

8 ビュー (過去 30 日間)
Lisa Vol
Lisa Vol 2020 年 5 月 15 日
編集済み: Anurag Ojha 2024 年 8 月 14 日
Hi, I need help with the collocation method.
n=numel (x);
A=zeros(n,n);
x(0)=a;
for i=1:n
w=prod((x-x(i)));
x(i)=(a+b)/2-((b-a)/2)*cos((i*pi)/n);
for j=1:n
l=w/((x-x(j))*diff(w(j)));
d(i,j)=diff
end
end
  1 件のコメント
Yash
Yash 2023 年 6 月 21 日
Hey can you please share some more information about the problem you are facing and the results you are expecting from the code.

サインインしてコメントする。

回答 (1 件)

Anurag Ojha
Anurag Ojha 2024 年 8 月 13 日
編集済み: Anurag Ojha 2024 年 8 月 14 日
Hi Lisa
For collocation method, kindly refer to the below code. I have taken certain assumptions like
  • Second-Order Differential Equation: The problem is assumed to be y(x)=f(x).
  • Homogeneous Boundary Conditions: Boundary conditions are assumed to be y(-1) = 0 and y(1) = 0
  • Chebyshev Nodes: Collocation points are calculated using Chebyshev nodes.
  • Interval: The interval is assumed to be [1,1]
  • Function f(x): The right-hand side function is assumed to be f(x) = sin(πx)..
  • Matrix A Construction: The collocation matrix A is constructed using a simplified finite difference approach.
  • Visualization: The coefficients c represent the function values at the collocation points.
Kindly make changes to the code as per your use case.
% Define the number of collocation points
n = 5; % You can change this value
% Define the interval [a, b]
a = -1;
b = 1;
% Initialize matrices and vectors
A = zeros(n, n); % Collocation matrix
x = zeros(1, n); % Collocation points
% Calculate Chebyshev nodes
for i = 1:n
x(i) = (a + b)/2 - ((b - a)/2) * cos((i * pi) / (n));
end
% Define the function f(x) (Right-hand side of the differential equation)
f = @(x) sin(pi * x); % Example function f(x) = sin(pi * x)
% Construct the collocation matrix A and the vector b
for i = 1:n
for j = 1:n
if i == j
A(i,j) = 2 / ((b-a)^2); % Second derivative of the basis function at x(i)
else
A(i,j) = (-1)^(i+j) / ((x(i) - x(j))^2); % Based on Lagrange basis function properties
end
end
end
% Calculate the right-hand side vector (function values at collocation points)
b = f(x)';
% Solve for the coefficients c
c = A \ b;
% Display the results
disp('Collocation points (x):');
Collocation points (x):
disp(x);
-0.8090 -0.3090 0.3090 0.8090 1.0000
disp('Coefficients (c):');
Coefficients (c):
disp(c);
1.0725 0.0197 -1.3843 -0.0912 0.1653
% Plot the resulting approximate solution
plot(x, c, '-o');
xlabel('x');
ylabel('y');
title('Collocation Method Approximation');

カテゴリ

Help Center および File ExchangeProgramming についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by