GAN Neural Network ( Project and Reshape Layer ) error.
7 ビュー (過去 30 日間)
古いコメントを表示
I copied the code from the following path https://uk.mathworks.com/help/deeplearning/ug/train-generative-adversarial-network.html#TrainGenerativeAdversarialNetworkGANExample-7 and try to run it on Matlab 2019a version it give error on the varialbe projectandreshapelayer that it is undefined function and variable. Image is attached.
2 件のコメント
Alexander Hagg
2020 年 11 月 7 日
The projectAndReshapeLayer is a custom example that was provided to Matlab in one of the example. Open it using the following command and save it to your local project (or add it to your path).
edit(fullfile(matlabroot,'examples','nnet','main','projectAndReshapeLayer.m'))
回答 (1 件)
Yonglei GUI
2021 年 2 月 21 日
classdef projectAndReshapeLayer < nnet.layer.Layer
properties
% (Optional) Layer properties.
OutputSize
end
properties (Learnable)
% Layer learnable parameters.
Weights
Bias
end
methods
function layer = projectAndReshapeLayer(outputSize, numChannels, name)
% Create a projectAndReshapeLayer.
% Set layer name.
layer.Name = name;
% Set layer description.
layer.Description = "Project and reshape layer with output size " + join(string(outputSize));
% Set layer type.
layer.Type = "Project and Reshape";
% Set output size.
layer.OutputSize = outputSize;
% Initialize fully connect weights and bias.
fcSize = prod(outputSize);
layer.Weights = initializeGlorot(fcSize, numChannels);
layer.Bias = zeros(fcSize, 1, 'single');
end
function Z = predict(layer, X)
% Forward input data through the layer at prediction time and
% output the result.
%
% Inputs:
% layer - Layer to forward propagate through
% X - Input data, specified as a 1-by-1-by-C-by-N
% dlarray, where N is the mini-batch size.
% Outputs:
% Z - Output of layer forward function returned as
% an sz(1)-by-sz(2)-by-sz(3)-by-N dlarray,
% where sz is the layer output size and N is
% the mini-batch size.
% Fully connect.
weights = layer.Weights;
bias = layer.Bias;
X = fullyconnect(X,weights,bias,'DataFormat','SSCB');
% Reshape.
outputSize = layer.OutputSize;
Z = reshape(X, outputSize(1), outputSize(2), outputSize(3), []);
end
end
end
function weights = initializeGlorot(numOut, numIn)
% Initialize weights using uniform Glorot.
varWeights = sqrt( 6 / (numIn + numOut) );
weights = varWeights * (2 * rand([numOut, numIn], 'single') - 1);
end
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Image Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!