# Integration of a function with respect to a dummy variable

25 ビュー (過去 30 日間)
Nikhil Yewale 2020 年 5 月 6 日 How to evaluate the integral ?
f(x) is integrated over a dummy variable z. Please note that x ((x(i) >= 0 or x(i) < 0)) is an array of n x 1 , and f(x) is a corresponding array of n x 1. I do not have the closed form expression for f(x), nor is curve fitting an option to approximate the data as an expression. How do I find corresponding vector A.
Kindly direct me to appropriate approach to solve this issue.

サインインしてコメントする。

### 採用された回答

Nikhil Yewale 2020 年 5 月 6 日

Hello
The issue is resolved by discussion with some friends
% say we are integrating a data resembling a parabola
x = -2:0.01:1;
y = x.^2;
% say you wanted to integrate from x = -2 to x = 0..
% (lower limit x = -2 is variable..may use a loop over x as per user's req.)
index = find(x == 0);
I = cumtrapz(x(1:index),y(1:index));
% any ' i'th ' element in 'I' denotes integration from x = -2 to x = x(i)
-I(end) % this should give integration of x.^2 from -2 to 0

サインインしてコメントする。

### その他の回答 (2 件)

Hiro 2020 年 5 月 6 日
Why don't you think about using Symblic Math Toolbox?
You can manipulate your equation as you wish.

#### 1 件のコメント

Nikhil Yewale 2020 年 5 月 6 日
Hello Sir, Thanks for the prompt reply
Symbolic toolbox is useful, however I do not have an expression for the function. I just have set of two arrays,
say x = [-0.5 -0.2 -0.1 -0.05 0 0.1 0.3 0.7] and so on
and I have corresponding array , say f = [-0.9 -0.5 0.4 0.3 0 -0.3 -0.5 0.5]
Using these two arrays I wish to find the integral , where you can imagine lower limit being set to 0, and upper limit being varied with each element of x(i).
This is like cumulative integral with a minor detail that lower limit is always set to 0.

サインインしてコメントする。

Hiro 2020 年 5 月 6 日
f = [-0.9 -0.5 0.4 0.3 0 -0.3 -0.5 0.5]
let me assume z to be:
z = [0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0]
and then If you prefer continous manner, you should either approximate f as a function or interpolate the discrete numbers.

#### 1 件のコメント

Nikhil Yewale 2020 年 5 月 6 日