Problem with using symbolic integration

4 ビュー (過去 30 日間)
Yasho Bharat Boggarapu
Yasho Bharat Boggarapu 2020 年 5 月 6 日
コメント済み: David Goodmanson 2020 年 5 月 6 日
This is my expression
l = 0.0357;
u = 0.9;
p = 5.1;
q =3;
f= ((x-l)^(p-1)*(u-x)^(q-1)/(beta(p,q)*(u-l)^(p+q-1)));
F = (int(f,x,[l x]))
For these values it gives me a solution , where as when I change the value of say q=3.1 , it doesnt solve it . I get this back with some big integers
int((2305843009213693952*(9/10 - x)^(21/10)*(x - 357/10000)^(41/10))/6549555978944313, x, 357/10000, x)
Can anyone help me find the problem?
  1 件のコメント
Yasho Bharat Boggarapu
Yasho Bharat Boggarapu 2020 年 5 月 6 日
sorry , I forgot to mention "syms x" in the first line.

サインインしてコメントする。

採用された回答

David Goodmanson
David Goodmanson 2020 年 5 月 6 日
Hello Yasho,
For any reasonable q, integrating from l to u gives F = 1 by definition of the beta function. When q is an integer, integration from l to an arbitrary x0 gives an answer because symbolic can expand out (u-x)^(q-1) as a polynomial. So for q = 3 you can see a quadratic as part of the answer.
When both p and q are nonintegers and an arbitrary x0 as the upper limit, you have an incomplete beta function which has to be done numerically.
  5 件のコメント
Yasho Bharat Boggarapu
Yasho Bharat Boggarapu 2020 年 5 月 6 日
But ,I have noticed that beta calculates for any real value of (p,q). Then ,how does it affect the integration ?
David Goodmanson
David Goodmanson 2020 年 5 月 6 日
it allows you to always have an answer for the denominator of the integrand which is good, but it does not affect the conclusion in the previous comment I wrote.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeMathematics についてさらに検索

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by