Heat Dissipation from an Annular Fin

9 ビュー (過去 30 日間)
Jonathan Bird
Jonathan Bird 2020 年 5 月 5 日
回答済み: Ayush Gupta 2020 年 6 月 10 日
I'm trying to find the rate of heat dissipation from an annular fin as a function of the fin radius. The rate of heat dissipation is found as follows:
q = (2*pi*k*n*w*theta_0*Rb)*((besselk(1,n*Rb)*besseli(1,n*Re)-besseli(1,n*Rb)*besselk(1,n*Re))/(besselk(0,n*Rb)*besseli(1,n*Re)+besseli(0,n*Rb)*besselk(1,n*Re)));
Where Rb and Re are the inner and outer radii respectively. k, n, w, theta_0 and Rb are all known values. How could I work out the rate of heat dissipation as a function of the outer radius Re for say Re = Rb to Re = 100*Rb and plot this?
Many thanks

回答 (1 件)

Ayush Gupta
Ayush Gupta 2020 年 6 月 10 日
This equation can be simplified by fixing the known values and the relation between Re and Rb, Refer to the code below:
x = [0:0.5:20];
result = [0:0.5:20];
for i = 1:length(x)
result(i) = cali(x(i));
end
plot(x,result)
function out = cali(Rb)
k = 1;
n= 1;
k = 1;
w = 1;
thefixedta_0 = 1;
Re = 100*Rb;
out = (2*pi*k*n*w*thefixedta_0*Rb)*((besselk(1,n*Rb)*besseli(1,n*Re)-besseli(1,n*Rb)*besselk(1,n*Re))/(besselk(0,n*Rb)*besseli(1,n*Re)+besseli(0,n*Rb)*besselk(1,n*Re)));
end

カテゴリ

Help Center および File ExchangeBessel functions についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by