Lyapunov exponent for fractional order differential equation
1 ビュー (過去 30 日間)
表示 古いコメント
Hi, I have three dimensional fde model of which I want to compute Lyapunov exponent with respect to parameter. I have taken this code from the paper entitled 'Matlab code for Lyapunov exponents of fractional order systems' but it's not working, Please help.
function [t,LE]=FO_Lyapunov_q(ne,ext_fcn,t_start,h_norm,t_end,x_start,h,q,p);
x=zeros(ne*(ne+1),1);
x0=x;
c=zeros(ne,1);
gsc=c; zn=c;
n_it = round((t_end-t_start)/h_norm);
x(1:ne)=x_start;
i=1;
while i<=ne
x((ne+1)*i)=1.0;
i=i+1;
end
t=t_start;
it=1;
while it<=n_it
[T,Y] = fde12(q,ext_fcn,t,t+h_norm,x,h);
t=t+h_norm;
Y=transpose(Y);
x=Y(size(Y,1),:);
i=1;
while i<=ne
j=1;
while j<=ne;
x0(ne*i+j)=x(ne*j+i);
j=j+1;
end;
i=i+1;
end;
zn(1)=0.0;
j=1;
while j<=ne
zn(1)=zn(1)+x0(ne*j+1)*x0(ne*j+1);
j=j+1;
end;
zn(1)=sqrt(zn(1));
j=1;
while j<=ne
x0(ne*j+1)=x0(ne*j+1)/zn(1);
j=j+1;
end
j=2;
while j<=ne
k=1;
while k<=j-1
gsc(k)=0.0;
l=1;
while l<=ne;
gsc(k)=gsc(k)+x0(ne*l+j)*x0(ne*l+k);
l=l+1;
end
k=k+1;
end
k=1;
while k<=ne
l=1;
while l<=j-1
x0(ne*k+j)=x0(ne*k+j)-gsc(l)*x0
(ne*k+l);
l=l+1;
end
k=k+1;
end;
zn(j)=0.0;
k=1;
while k<=ne
zn(j)=zn(j)+x0(ne*k+j)*x0(ne*k+j);
k=k+1;
end
zn(j)=sqrt(zn(j));
k=1;
while k<=ne
x0(ne*k+j)=x0(ne*k+j)/zn(j);
k=k+1;
end
j=j+1;
end
% update running vector magnitudes
k=1;
while k<=ne;
c(k)=c(k)+log(zn(k));
k=k+1;
end;
% normalize exponent
k=1;
while k<=ne
LE(k)=c(k)/(t-t_start);
k=k+1;
end
i=1;
while i<=ne
j=1;
while j<=ne;
x(ne*j+i)=x0(ne*i+j);
j=j+1;
end
i=i+1;
end;
x=transpose(x);
it=it+1;
end
%----------------------------------------------------------------------------------------------------------------------------%
function f=LE_RF(t,x,p)
f=zeros(size(x));
X= [x(4), x(7), x(10);
x(5), x(8), x(11);
x(6), x(9), x(12)];
%RF equations
f(1)=x(2)*(x(3)-1+x(1)*x(1))+0.1*x(1);
f(2)=x(1)*(3*x(3)+1-x(1)*x(1))+0.1*x(2);
f(3)=-2*x(3)*(p+x(1)*x(2));
%Jacobian matrix
J=[2*x(1)*x(2)+0.1, x(1)*x(1)+x(3)-1, x(2);
-3*x(1)*x(1)+3*x(3)+1,0.1,3*x(1);
-2*x(2)*x(3),-2*x(1)*x(3),-2*(x(1)*x(2)+p)];
%Righthand side of variational equations
f(4:12)=J*X; % To be modified if ne>3
%----------------------------------------------------------------------------------------------------------------------------%
function run_Lyapunov_p(ne,ext_fcn,t_start,h_norm,t_end,x_start,h,q,p_min,p_max,n);
hold on;
p_step=(p_max-p_min)/n
p=p_min;
while p<=p_max
[t,LE]=FO_Lyapunov_q(ne,ext_fcn,t_start,h_norm,t_end,x_start,h,q,p);
p=p+p_step
plot(p,LE);
end
end
%----------------------------------------------------------------------------------------------------------------------------%
run_FO_Lyapunov_q(3,@LE_RF,0,0.05,150,[0.1;0.1;0.1],0.002,0.9,1,800)
0 件のコメント
回答 (1 件)
nune pratyusha
2022 年 7 月 26 日
you have to download fde12.m file and put all programs in one folder then run. It will work
0 件のコメント
参考
カテゴリ
Find more on Matrix Computations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!