trasformation of a unit vector quiver3
2 ビュー (過去 30 日間)
古いコメントを表示
Hi everyone , i would like to know if it is possibile to obtain a trasformation of quiver3 object . I have a normal quiver3 object and i want to trasform with my homogenous traformation matrix hM(4*4). i don't want modify my q_w but get another one. thank you very much.
q_w=quiver3(zeros(3,1),zeros(3,1),zeros(3,1),[1;0;0],[0;1;0],[0;0;1]);
q_w.LineWidth=3;
q_w.AutoScaleFactor=8;
rz=[ cos(psi) -sin(psi) 0 ;
sin(psi) cos(psi) 0 ;
0 0 1] ;
ry=[ cos(theta) 0 sin(theta) ;
0 1 0 ;
-sin(theta) 0 cos(theta)];
rx=[ 1 0 0 ;
0 cos(fi) -sin(fi);
0 sin(fi) cos(fi)];
rM=ry*rx*rz; % giusta
% rMf=matlabFunction(rM);
%creaiamo la nostra matrice omogenea
transition=[x y z]';
% transitionF=matlabFunction(transition);
one=ones(1);
hM= [ rM transition ;
zeros one ];
0 件のコメント
採用された回答
Ameer Hamza
2020 年 5 月 4 日
編集済み: Ameer Hamza
2020 年 5 月 4 日
Try this
vec1 = [1;0;0];
vec2 = [0;1;0];
vec3 = [0;0;1];
q_w=quiver3(zeros(3,1),zeros(3,1),zeros(3,1),vec1,vec2,vec3);
q_w.LineWidth=3;
q_w.AutoScaleFactor=8;
psi = pi/4;
theta = pi/3;
fi = pi/6;
rz=[ cos(psi) -sin(psi) 0 ;
sin(psi) cos(psi) 0 ;
0 0 1] ;
ry=[ cos(theta) 0 sin(theta) ;
0 1 0 ;
-sin(theta) 0 cos(theta)];
rx=[ 1 0 0 ;
0 cos(fi) -sin(fi);
0 sin(fi) cos(fi)];
rM=ry*rx*rz; % giusta
figure;
q_w=quiver3(zeros(3,1),zeros(3,1),zeros(3,1),rM*vec1,rM*vec2,rM*vec3);
q_w.LineWidth=3;
q_w.AutoScaleFactor=8;
Also see eul2rotm(): https://www.mathworks.com/help/releases/R2020a/robotics/ref/eul2rotm.html to generate the rotation matrix.
12 件のコメント
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!