How to integrate the function in Matlab?

3 ビュー (過去 30 日間)
Ravikiran Mundewadi
Ravikiran Mundewadi 2020 年 5 月 1 日
コメント済み: Ameer Hamza 2020 年 5 月 1 日
given y(t) = a*x+b*(((t^2/2)+t))+c*(((t^3/3)+t^2+t))+d*(((t^4/4)+t^3+((3*t^2)/2)+t))+e*(((t^5/5)+t^4+2*t^3+2*t^2+t))+f*(((t^6/6)+t^5+((5*t^4)/2)+((10*t^3)/3)+((5*t^2)/2)+t))
int((exp(x-t)*(y(t)^3)),t,0,1)

回答 (1 件)

Ameer Hamza
Ameer Hamza 2020 年 5 月 1 日
編集済み: Ameer Hamza 2020 年 5 月 1 日
Try this
syms t
s = 0.3;
a = 0.2;
b = 0.5;
c = 0.3;
d = 0.8;
e = 0.1;
f = 0.8;
x = 0.3;
y = a*x+b*(((t^2/2)+t))+c*(((t^3/3)+t^2+t))+d*(((t^4/4)+t^3+((3*t^2)/2)+t))+e*(((t^5/5)+t^4+2*t^3+2*t^2+t))+f*(((t^6/6)+t^5+((5*t^4)/2)+((10*t^3)/3)+((5*t^2)/2)+t));
y_int = int((exp(x-t)*(y^3)),t,0,1);
y_int2 = vpa(y_int);
disp(y_int) % symbolic output
disp(y_int2) % output in decimal format
Result
(3*exp(-7/10)*(14312622602045415832*exp(1) - 38905741936622033629))/1000000
164.22632490929883023849072628867
  2 件のコメント
Ravikiran Mundewadi
Ravikiran Mundewadi 2020 年 5 月 1 日
a,b,c,d,e,f are constants without values how to calculate?
Ameer Hamza
Ameer Hamza 2020 年 5 月 1 日
If they are unknown constants, then you can also define them as symbolic variables
syms t s a b c d e f x
y = a*x+b*(((t^2/2)+t))+c*(((t^3/3)+t^2+t))+d*(((t^4/4)+t^3+((3*t^2)/2)+t))+e*(((t^5/5)+t^4+2*t^3+2*t^2+t))+f*(((t^6/6)+t^5+((5*t^4)/2)+((10*t^3)/3)+((5*t^2)/2)+t));
y_int = int((exp(x-t)*(y^3)),t,0,1);
The output will be a symbolic expression in term of (s a b c d e f x).
y_int = 20339574*d^3*exp(x) + 28436783046*e^3*exp(x) + 80571537949566*f^3*exp(x) - (4821*b^3*exp(x - 1))/8 - (2665441*c^3*exp(x - 1))/27 - (3538475895*d^3*exp(x - 1))/64 - (9662398822711*e^3*exp(x - 1))/125 - (1752129179993373*f^3*exp(x - 1))/8 + 222*b^3*exp(x) + 36318*c^3*exp(x) - a^3*x^3*exp(x - 1) + 17838*b*c^2*exp(x) + 3252*b^2*c*exp(x) + 914130*b*d^2*exp(x) + 19818*b^2*d*exp(x) + 77530230*b*e^2*exp(x) + 6773016*c*d^2*exp(x) + 143892*b^2*e*exp(x) + 819570*c^2*d*exp(x) + 9819703674*b*f^2*exp(x) + 676668594*c*e^2*exp(x) + 1205850*b^2*f*exp(x) + 7218954*c^2*e*exp(x) + 98703428940*c*f^2*exp(x) + 7108899858*d*e^2*exp(x) + 72227142*c^2*f*exp(x) + 634676832*d^2*e*exp(x) + 1184848286826*d*f^2*exp(x) + 7404854034*d^2*f*exp(x) + 16114285888956*e*f^2*exp(x) + 1137476253630*e^2*f*exp(x) - (96967*b*c^2*exp(x - 1))/2 - (35345*b^2*c*exp(x - 1))/4 - (79515243*b*d^2*exp(x - 1))/32 - (861849*b^2*d*exp(x - 1))/16 - (10537449387*b*e^2*exp(x - 1))/50 - (294575189*c*d^2*exp(x - 1))/16 - (7822617*b^2*e*exp(x - 1))/20 - (26733731*c^2*d*exp(x - 1))/12 - (213541775907*b*f^2*exp(x - 1))/8 - (45984397557*c*e^2*exp(x - 1))/25 - (26222619*b^2*f*exp(x - 1))/8 - (294347011*c^2*e*exp(x - 1))/15 - (1073214948765*c*f^2*exp(x - 1))/4 - (1932399324261*d*e^2*exp(x - 1))/100 - (1178002201*c^2*f*exp(x - 1))/6 - (138018436773*d^2*e*exp(x - 1))/80 - (51532025078445*d*f^2*exp(x - 1))/16 - (644111363199*d^2*f*exp(x - 1))/32 - (876063410205933*e*f^2*exp(x - 1))/20 - (30919810303923*e^2*f*exp(x - 1))/10 + a^3*x^3*exp(x) - (447*a*b^2*x*exp(x - 1))/4 + 6*a^2*b*x^2*exp(x) - (5221*a*c^2*x*exp(x - 1))/3 + 15*a^2*c*x^2*exp(x) - (892563*a*d^2*x*exp(x - 1))/16 + 48*a^2*d*x^2*exp(x) - (80434323*a*e^2*x*exp(x - 1))/25 + 195*a^2*e*x^2*exp(x) - (1179786123*a*f^2*x*exp(x - 1))/4 + 978*a^2*f*x^2*exp(x) + 242628*b*c*d*exp(x) + 1948164*b*c*e*exp(x) + 17901792*b*c*f*exp(x) + 16125516*b*d*e*exp(x) + 161510964*b*d*f*exp(x) + 130095204*c*d*e*exp(x) + 1681817136*b*e*f*exp(x) + 1409661276*c*d*f*exp(x) + 15791037732*c*e*f*exp(x) + 177725405940*d*e*f*exp(x) - (27*a^2*b*x^2*exp(x - 1))/2 - 37*a^2*c*x^2*exp(x - 1) - (501*a^2*d*x^2*exp(x - 1))/4 - (2613*a^2*e*x^2*exp(x - 1))/5 - (5295*a^2*f*x^2*exp(x - 1))/2 - (2638063*b*c*d*exp(x - 1))/4 - 5295635*b*c*e*exp(x - 1) - (97324157*b*c*f*exp(x - 1))/2 - (876673227*b*d*e*exp(x - 1))/20 - (3512258097*b*d*f*exp(x - 1))/8 - (707270753*c*d*e*exp(x - 1))/2 - (45716528721*b*e*f*exp(x - 1))/10 - (15327426191*c*d*f*exp(x - 1))/4 - (214622453951*c*e*f*exp(x - 1))/5 - (9662154824511*d*e*f*exp(x - 1))/20 + 42*a*b^2*x*exp(x) + 642*a*c^2*x*exp(x) + 20526*a*d^2*x*exp(x) + 1183614*a*e^2*x*exp(x) + 108504786*a*f^2*x*exp(x) - 825*a*b*c*x*exp(x - 1) - (15357*a*b*d*x*exp(x - 1))/4 - (108957*a*b*e*x*exp(x - 1))/5 - (36995*a*c*d*x*exp(x - 1))/2 - (292551*a*b*f*x*exp(x - 1))/2 - (593894*a*c*e*x*exp(x - 1))/5 - 891961*a*c*f*x*exp(x - 1) - (8040531*a*d*e*x*exp(x - 1))/10 - (26807721*a*d*f*x*exp(x - 1))/4 - 58988181*a*e*f*x*exp(x - 1) + 306*a*b*c*x*exp(x) + 1416*a*b*d*x*exp(x) + 8022*a*b*e*x*exp(x) + 6810*a*c*d*x*exp(x) + 53820*a*b*f*x*exp(x) + 43704*a*c*e*x*exp(x) + 328146*a*c*f*x*exp(x) + 295806*a*d*e*x*exp(x) + 2465520*a*d*f*x*exp(x) + 21700566*a*e*f*x*exp(x)
you can use subs() function to substitute specific values of these constants

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by