ode45 Set of 3 second order ODE not solving correctly

1 回表示 (過去 30 日間)
N/A
N/A 2020 年 4 月 19 日
回答済み: David Goodmanson 2020 年 4 月 20 日
Attempting to solve 3 2nd order ODE's (broken down into 6 1st orders here) using ode45. My answer does not appear to come out correctly and am not sure what I am doing wrong.
CODE:
tspan=[0 60]; %Time Boundaries
x0=[0 0 0 0 0 0]; %Inital Values of disp and vel
[t,x]=ode45(@output,tspan, x0) %Implement ode45 solver
plot(t,x)
xlabel('time')
ylabel('displacement/velocity')
title('Problem 25.18')
legend('Displacement','Velocity')
function dxdt=output(t,x) %Create system of equations
m1=60;
m2=70;
m3=80;
k1=50;
k2=100;
k3=50;
g=9.81;
dxdt=zeros(6,1);
dxdt(1)=x(1);
dxdt(2)=x(2);
dxdt(3)=x(3);
dxdt(4)=g+(k2/m1)*(x(2)-x(1))-(k1/m1)*x(1);
dxdt(5)=g+(k3/m2)*(x(3)-x(2))+(k2/m2)*(x(1)-x(2));
dxdt(6)=g+(k3/m3)*(x(2)-x(3));
end

採用された回答

David Goodmanson
David Goodmanson 2020 年 4 月 20 日
Hi William,
you are close on this. x1,x2,x3 are postions and x4,x5,x6 are velocities so the appropriate lines of code are
dxdt(1)=x(4);
dxdt(2)=x(5);
dxdt(3)=x(6);
in which case you get oscillations.
g is positive which makes positive x in the direction of down. That's all right as long as you acknowledge the fact in a picture or something. g = -9.81 would put positive x up which is more common.

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by